
FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

Fast Rounding of Floating Point Numbers
in C/C++ on Wintel Platform

Laurent de Soras

Updated on 2008.03.08

web: http://ldesoras.free.fr

ABSTRACT

This is a technical paper related to practical aspects of the C/C++ programming language.
Number rounding is a rather common mathematical operation, which seems quite simple at a
first glance. However both x86-compatible Floating Point Units and C/C++ standard
constraints make this operation slower than expected for this level of complexity. For
algorithms using extensively this operations, the slowdown could be critical. In this paper, we
will review the rounding process and the causes of the slowdown. We will propose and analyse
workarounds giving different compromises between accuracy and execution speed.

KEYWORDS

Rounding, trunc, round, floor, ceil, C/C++, x86

Copyright 2004 – Laurent de Soras Page 1/10

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

0. Document structure

0.1 Table of content

0. DOCUMENT STRUCTURE.. 2

0.1 TABLE OF CONTENT..2
0.2 REVISION HISTORY...2
0.3 GLOSSARY...2

1. WHY IT TAKES AGES WITH C/C++ INSTRUCTIONS...3

2. THE FASTEST WAY...3

2.1 FILD/FISTP...3
2.2 USING MEMORY..4

2.2.1 Summary of floating point number structure..4
2.2.2 The method...5

2.3 WHY IT FAILS..6

3. ACCURATE METHOD...6

3.1 CONCEPT...7
3.2 ROUND TO NEAREST INTEGER..7
3.3 ROUND TOWARDS MINUS INFINITY (FLOOR)..9
3.4 ROUND TOWARDS PLUS INFINTY (CEIL)..9
3.5 TRUNCATE..10

0.2 Revision history

Version Date Modifications
– 2003.10.19 Creation

1.0 2004.07.04 Published
1.1 2005.11.27 Typo in truncate_int() source code

1.2 2006.06.17 Misc. typos in source code
1.3 2008.03.08

0.3 Glossary

CPU Central Processing Unit

FPU Floating Point Unit

IEEE Institute of Electrical and Electronics Engineers

WINTEL Combination of Microsoft Windows operating system and Intel x86
architecture.

X86 Family of the Intel processor, IA32 and IA64 architectures.

Copyright 2004 – Laurent de Soras Page 2/10

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

1. Why it takes ages with C/C++ instructions

In C language, when you cast a floating point number to an integer, rounding is done
according to precise rules. The process is called truncation or round towards 0, and consists in
removing everything after the decimal point. The compiler achieves this by setting the FPU
rounding mode to the right state, truncating the number using fld and fistp assembly
instructions and restoring the previous FPU state. floor() and ceil() instructions works very
similarly, except that the number obtained is still in floating point representation and must be
casted if true integer is wanted.

The following code is the __ftol() function, automatically included by the Microsoft Visual
C++ 6.0 compiler to do the cast.

 push ebp ; Stack management
 mov ebp, esp ;
 add esp, -12 ;
 wait
 fnstcw word ptr [ebp-2] ; Retrieve FPU Ctrl Word (rounding mode)
 wait
 mov ax, word ptr [ebp-2]
 or ah, 12 ; Modifies CW to set the rounding mode
 mov word ptr [ebp-4], ax
 fldcw word ptr [ebp-4] ; Changes rounding mode
 fistp qword ptr [ebp-12] ; Rounds the number
 fldcw word ptr [ebp-2] ; Restores old rounding mode
 mov eax, dword ptr [ebp-12] ; Gets lowest 32 bits of the result
 mov edx, dword ptr [ebp-8] ; Gets highest 32 bits
 leave ; Stack management
 ret

There are many flaws here:

• The function is not inlined and does useless stack management.

• It is a generic function giving 64-bit results. If we need only a signed 32-bit number, this
is a waste of cycles.

• Whereas the fistp instruction executes very quickly, this is not true for the rounding
mode change. Indeed, reading and writing the FPU Control Word flushes the instruction
pipeline. On modern CPU, it is a cause of major slowdown if the rounding takes place in a
tight loop.

2. The fastest way

We will describe in this section two solutions giving fast result and relatively accurate
results. The fastest solution depends entirely of the application, context and wanted accuracy.

2.1 FILD/FISTP

The code reviewed in the previous section did absolutely no assumption on the current FPU
state. That is why it needed to change explicitly the rounding mode. But if we expect the FPU
being always set to a certain rounding mode (the one we want), we do not have to save,
change and restore the FPU Control Word every time.

However to make this assumption, we need to have a complete control on the program
source code, in order to be sure that the rounding mode is consistent in every place the

Copyright 2004 – Laurent de Soras Page 3/10

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

function is used. If it is changed somewhere, we have to take it into account to keep right the
results. FPU Control Word is thread-wise, meaning that the rounding modes of two different
threads are independent. This consideration is important in a host/plug-in architecture, where
codes from multiple sources cooperate in the same process or thread.

So we can set once the rounding mode, do the rounding multiple times, and restore the
rounding mode at the end of the operation. When a program starts in Windows, the default
FPU rounding mode is always set to round to nearest integer. This is a good thing to know,
because this rounding mode is quite common. And by playing with the sign and offsets, we
could realize other rounding modes – we will review them later. The following function rounds
a number in the current rounding mode, therefore round to nearest integer, given the above-
mentioned conditions.

inline int conv_float_to_int (float x)
{
 int a;
 __asm
 {
 fld x
 fistp a
 }

 return (a);
}

We can also overload this function for double type, with exactly the same code.

2.2 Using memory

The second solution is to use the memory storage format of the floating point numbers. We
can achieve the rounding by manipulating the bits of the floating point representation.

2.2.1 Summary of floating point number structure

An IEEE floating point number is made of three bit fields: the sign, the exponent and the
mantissa. Sign is always one bit, but its working is different of the classic 2-complement
representation of integer numbers. It just means “the rest of the bits represents the absolute
value of the number, which is actually negative”.

Exponent is the power of two, scaling the mantissa. It is biased: a constant value has been
added to make it an unsigned integer. Precision and bias depends on the global width of the
number. For 32-bit float, exponent is 8 bits and bias B = 127. For 64-bit double-precision
floating point numbers, exponent is 11 bits and B = 1023.

Mantissa takes the remaining P bits. It is an unsigned integer. To save bits, the first, most
significant bit is never represented. Indeed, it is always set to 1. Therefore we get the following
formula:

x=±1M
2P

×2E−B

Where M is the mantissa value, P the mantissa precision, E the exponent value and B the
bias. This formula is valid for normal numbers. There are specific cases, like denormal values
or NaN (Not a Number) where the meaning of the bits is modified.

Copyright 2004 – Laurent de Soras Page 4/10

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

2.2.2 The method

The method consist in making appear the rounded number in the mantissa field, without
needing to do extra shift or masking. Thus, we just have to store the floating point number in
memory and read part of it as it was an integer. How can we do this magic?

The most difficult part is to scale right the mantissa. Indeed, in the natural representation,
mantissa bits are aligned to left. The most significant bit set is always at position P, whatever
the number magnitude. We want to align it to the right, in order to conform to a fixed point
representation. The solution here is to add a huge constant number C, bigger than the input
number. Thus, the most significant bit set is always the C’one. Our number can now be aligned
to the right, all the bits fixed within the mantissa. But what contain these bits? If C is too big,
significant bits of the input will be lost. If it is too small, we will get extra-bits in the lowest
part we do not want. During the addition, the rounding rules of the FPU determine the lowest
bits of the mantissa. So we have to choose C in order to put the bit 0 of the rounded number
on the bit 0 of the mantissa. Therefore the integer number will be calculated according to the
FPU rounding rules.

The simplest way to do it is to find the number to add to 1.0 in order to get a mantissa full
of 0’s excepted the lower bit (1 in integer representation). Absolute value of the mantissa is P
bits. We know that the most significant bit is implicit. So we have to obtain the binary number
1000...001 within P + 1 bits. Thus, we choose:

C=2P

What is the range of the input? For the upper bound, it depends on the mantissa resolution:
it has to be less than 2P . The lower bound is 0. Indeed, this method will fail with negative
numbers. Why ? Because by adding negative numbers to C, we obtain numbers in the form
0111...xxx. The most significant bit is now at the position P – 1 instead of P, shifting our
number. There is a solution to this problem: choosing C higher, still containing zeros in the
lower bits, and with the same most significant bit. The optimal solution is in the binary form
11000...000, because we get the widest range for both signs. So:

CS=3×2P−1

The valid range becomes [−2P−1 ; 2P−1−1]
In the code below, we have to split CS in two parts because it is not representable as an

integer number ; C/C++ standard only guarantees that long type is at least 32-bit wide. Also,
the bits we have to read are located at the beginning of the number, because the memory
model on x86 is Litte Endian (lower significant bit first). The range checks are done in two
times: the first test is rough because we do not assume anything on the used rounding mode.
The second test verify that both original and rounded numbers are of the same sign. This
should detect minor range errors, which would have passed the first tests.

inline int conv_float_to_int_mem (double x)
{
 const int p = 52;
 const double c_p1 = static_cast <double> (1L << (p / 2));
 const double c_p2 = static_cast <double> (1L << (p – p / 2));
 const double c_mul = c_p1 * c_p2;
 assert (x > -0.5 * c_mul – 1);
 assert (x < 0.5 * c_mul);
 assert (x > static_cast <double> (INT_MIN) – 1.0);
 assert (x < static_cast <double> (INT_MAX) + 1.0);

 const double cs = 1.5 * c_mul;
 x += cs;

 const int a = *(reinterpret_cast <const int *> (&x));
 assert (a * x >= 0);

 return (a);
}

Copyright 2004 – Laurent de Soras Page 5/10

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

2.3 Why it fails

The two described methods are quite fast. However they rely on the processor rounding
mode, which is round to nearest integer by default. So we wrote round-to-nearest functions?
Not quite. Actually the exact rounding mode is really called round to closest even integer.
Practically, it is almost the same thing. Except for the numbers which are exactly half-way

between two integers:
3
2 ,

25
2 , −7

2 , etc. In this case, the x86 rounding mode

chooses the closest even integer, whereas the mathematical operation one generally expects
chooses the immediate greater integer.

To point out the differences, here are a few examples of both rounding modes:

Number To nearest
integer

To closest
even integer

–2.25 –2 –2

–1.75 –2 –2

–1.50 –1 –2

–1.25 –1 –1

–0.75 –1 –1

–0.50 0 0

–0.25 0 0

0.25 0 0

0.50 1 0

0.75 1 1

1.25 1 1

1.50 2 2

1.75 2 2

2.25 2 2

Depending on the application, this particularity may be critical or not. We will expose below a
solution to obtain a real to-nearest-integer mode.

3. Accurate method

The first concept to understand is the model of rounding for each mode. This model applies
to all modes except truncation. It is mainly characterised by a periodicity and a scheme. The
scheme is like a pattern for rounding, which can be repeated with a certain period within the
domain. To make things clear, we will describe the models for each pattern.

Rounding mode Periodicity Scheme

Towards minus infinity (floor) 1 [N ; N1 [ N
Towards plus infinity (ceil) 1]N−1 ; N]  N
To nearest integer 1

[N− 1
2
; N 1

2
[ N

Copyright 2004 – Laurent de Soras Page 6/10

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

Rounding mode Periodicity Scheme

To closest even integer 2

{[2N−1
2 ; 2N1

2]  2N

]2N1
2
; 2N3

2
[ 2N1

3.1 Concept

With the to closest even integer mode, we can achieve easily and accurately the other
rounding modes. Indeed, we observe a similarity in the rounding schemes. They have globally
the same shape. By shifting the ranges, scaling the input and playing with sign, it is possible to
always operate in the closest even integer mode and get back to the original range to extract
the result.

3.2 Round to nearest integer

We will detail only this mode, others are simple to reconstruct once the concept is
understood. The drawing below shows the transforms we apply on the target mode scheme to
reach the closest even integer mode.

Copyright 2004 – Laurent de Soras Page 7/10

N–1 N N+1 N+2

To closest even integer

To nearest integer

Ceil

Floor

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

The last step is an integer division, but we have to be careful. In order to make it work in
the negative range, the division must always round towards minus infinity. C/C++ division
uses the truncation method, so it has to be avoided. Instead, we use an arithmetical shift to
the right, which has the right property. Second pitfall, do not use the >> C/C++ operator,
because standard does not guarantee that sign of negative numbers will be preserved. The use
of assembly language is unavoidable here if we want to keep execution as fast as possible.

int round_int (double x)
{
 assert (x > static_cast <double> (INT_MIN / 2) – 1.0);
 assert (x < static_cast <double> (INT_MAX / 2) + 1.0);

 const float round_to_nearest = 0.5f;
 int i;
 __asm
 {
 fld x
 fadd st, st (0)
 fadd round_to_nearest
 fistp i
 sar i, 1
 }

 return (i);
}

The integer division reduces the range of the rounded numbers from -230 to 230-1. It is
possible to obtain the full 32-bit range by temporarily using 64-bit arithmetic:

int round_int (double x)
{
 assert (x > static_cast <double> (INT_MIN / 2) – 1.0);
 assert (x < static_cast <double> (INT_MAX / 2) + 1.0);

 const float round_to_nearest = 0.5f;
 int i;
 __int64 tmp;
 __asm
 {
 fld x
 fadd st, st (0)
 fadd round_to_nearest

Copyright 2004 – Laurent de Soras Page 8/10

N–1 N N+1 N+2

To closest even integer

To nearest integer

2N–1 2N 2N+1 2N+2

N–1 N N+1 N+2

x2

+0.5

Integer division by 2

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

 fistp qword ptr tmp
 mov eax, dword ptr tmp
 sar dword ptr tmp + 4, 1
 rcr eax, 1
 mov i, eax
 }

 return (i);
}

The same trick can be used for the other rounding functions.

3.3 Round towards minus infinity (floor)

The only difference between floor and the to nearest integer mode is the offset.

int floor_int (double x)
{
 assert (x > static_cast <double> (INT_MIN / 2) – 1.0);
 assert (x < static_cast <double> (INT_MAX / 2) + 1.0);

 const float round_towards_m_i = -0.5f;

 int i;
 __asm
 {
 fld x
 fadd st, st (0)
 fadd round_towards_m_i
 fistp i
 sar i, 1
 }

 return (i);

3.4 Round towards plus infinty (ceil)

This mode is a kind of mirror of the towards plus infinity mode.

int ceil_int (double x)
{
 assert (x > static_cast <double> (INT_MIN / 2) – 1.0);
 assert (x < static_cast <double> (INT_MAX / 2) + 1.0);

 const float round_towards_p_i = -0.5f;
 int i;
 __asm
 {
 fld x
 fadd st, st (0)
 fsubr round_towards_p_i
 fistp i
 sar i, 1
 }

 return (-i);
}

Copyright 2004 – Laurent de Soras Page 9/10

FAST ROUNDING OF FLOATING POINT NUMBERS IN C/C++ ON WINTEL PLATFORM

3.5 Truncate

Truncate mode is the default rounding mode in C. This consists in suppressing the decimals,
giving a towards minus infinity mode for positive numbers, and towards plus infinity mode for
negative numbers.

int truncate_int (double x)
{
 assert (x > static_cast <double> (INT_MIN / 2) – 1.0);
 assert (x < static_cast <double> (INT_MAX / 2) + 1.0);

 const float round_towards_m_i = -0.5f;
 int i;
 __asm
 {
 fld x
 fadd st, st (0)

 fabs
 fadd round_towards_m_i
 fistp i
 sar i, 1
 }

 if (x < 0)
 {
 i = -i;
 }

 return (i);
}

CONCLUSION

We have reviewed several fast methods to achieve fast rounding, assuming we know the
default processor rounding mode, and without the need of changing it. It is also possible to
extend this idea to produce any [desired rounding mode / processor rounding mode]
combinations.

Copyright 2004 – Laurent de Soras Page 10/10

	0.Document structure
	0.1Table of content
	0.2Revision history
	0.3Glossary

	1.Why it takes ages with C/C++ instructions
	2.The fastest way
	2.1FILD/FISTP
	2.2Using memory
	2.2.1Summary of floating point number structure
	2.2.2The method

	2.3Why it fails

	3.Accurate method
	3.1Concept
	3.2Round to nearest integer
	3.3Round towards minus infinity (floor)
	3.4Round towards plus infinty (ceil)
	3.5Truncate

