
THE QUEST FOR THE PERFECT RESAMPLER

The Quest For The Perfect Resampler
Laurent de Soras

2005.10.14

web: http://ldesoras.free.fr

ABSTRACT

This is a technical paper dealing with digital sound synthesis. Among all known sound
synthesis techniques, there is at least one that will never be outdated: sample playback. We
present in this document a computationally cheap method to play back samples at variable
rate without perceptible aliasing. The main application of this technique is virtual music
synthesisers running on personal computers.

KEYWORDS

Sound synthesis, sample playback, resampling, interpolation, alias free

Copyright 2003-2005 – Laurent de Soras Page 1/28

THE QUEST FOR THE PERFECT RESAMPLER

0. Document structure

0.1 Table of content

0. DOCUMENT STRUCTURE.. 2

0.1 TABLE OF CONTENT... 2
0.2 REVISION HISTORY... 2
0.3 GLOSSARY.. 3

1. INTRODUCTION...4

2. ROUND-UP OF CLASSIC RESAMPLING TECHNIQUES.. 5

2.1 KINDS OF INTERPOLATORS.. 5
2.2 MIP-MAPPING.. 6
2.3 OVERSAMPLED SAMPLE SOURCE... 6

3. PROPOSED SOLUTION...7

3.1 OVERVIEW.. 7
3.2 MIP MAPPING.. 8
3.3 INTERPOLATOR DESIGN.. 10
3.4 INTERPOLATING THE INTERPOLATOR.. 13
3.5 THE CASE R < 1... 15
3.6 FINAL DOWNSAMPLING.. 17

4. IMPLEMENTATION...18

4.1 A COMPLETE EXAMPLE... 18
4.1.1 Requirements... 18
4.1.2 MIP-mapping and data storage.. 18
4.1.3 MIP-map filter design... 19
4.1.4 Interpolation filter design, r > 1.. 20
4.1.5 Design for r < 1.. 22
4.1.6 Downsampling filter... 23
4.1.7 Transitions between MIP-map levels.. 23
4.1.8 Performances.. 24

4.2 POSSIBLE VARIATIONS.. 24

5. REFERENCES..26

6. APPENDICES... 27

6.1 FILTER COEFFICIENTS... 27

0.2 Revision history

Version Date Modifications
1.0 2003.06.20 Initial release
1.1 2003.06.23 Miscellaneous typos
1.2 2004.02.18 Fixed link for reference [1]
1.3 2005.02.12 Typos,

Reference [3] is a broken link
Algorithm variations updated

1.4 2005.10.14 Typos,
Headroom issue revised
Fixed interpolation diagram
Fixed inconsistencies in MIP map filter design

Copyright 2003-2005 – Laurent de Soras Page 2/28

THE QUEST FOR THE PERFECT RESAMPLER

0.3 Glossary

CPU Central Processing Unit

DAW Digital Audio Workstation

FFT Fast Fourier Transform

FIR Finite Impulse Response

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

MAC Multiply and Accumulate

MIP Here, Multum In Parvo

SDRAM Synchronous Dynamic Random Access Memory

SIMD Single Instruction, Multiple Data

SNR Signal to Noise Ratio

TPDF Triangular Probability Density Function

Copyright 2003-2005 – Laurent de Soras Page 3/28

THE QUEST FOR THE PERFECT RESAMPLER

1. Introduction

The kernel of a sample-playback synthesiser (called sampler) is the resampling algorithm,
using an interpolation filter. They have been already deeply studied. The main issues are the
maximisation of the passband flatness and the optimisation of the SNR, which is degraded by
the aliasing introduced by the interpolation. We will present in this document a method, or
more exactly a set of methods, to interpolate sample data efficiently — in every sense of the
term.

Copyright 2003-2005 – Laurent de Soras Page 4/28

THE QUEST FOR THE PERFECT RESAMPLER

2. Round-up of classic resampling techniques

2.1 Kinds of interpolators

Interpolators generally fall into two classes: polynomial and FIR. The difference essentially
lies in implementation, as polynomial interpolators can be generally described by their impulse
response.

Low-order polynomial interpolators give surprisingly decent results at a low computational
cost [1]. For example, the 4-point third-order Hermite interpolator does a very good job for a
few multiplications and additions. One can represent the interpolation computation as a matrix
multiplication. The 4,3 Hermite is expressed as:

f 3,4H tk =[1 t t2 t3]×1
2 [0 2 0 0

−1 0 1 0
2 −5 4 −1
−1 3 −3 1]×[xk−1

xk
xk1

xk2
] (2.1-1)

To increase the quality, it is necessary to raise the order and the number of points.
Unfortunately this leads quickly to large calculations, which are not compensated by a
significant enough increase of quality.

On the other hand, we have the generic FIR convolutions. The first method is the direct
application of the sampling theorem, where a window bounds the sinc function. This leads to
multirate designs such as described in [4]. They have many pros and cons:

• Possibility to design the interpolation response curve accurately
• Straightforward technique working very well for all kind of resampling

• Only rates as fractions of integers (N /M) are handled.
• A lot of memory is wasted to store the complete impulse of a single N /M combination.
• Impulse should have a relatively important number of zero-crossings to get high quality

(low aliasing, flat passband).
• Calculation cost increases proportionally with the resampling factor.

High quality interpolators are computationally cheaper than equivalent polynomial ones.
This design is efficient for fixed rates, which is not the case in music synthesisers, where there
is one rate per note, and it can change subtly if special effects such as vibrato or pitch bend
are applied. A more advanced method is to linearly interpolate the impulse coefficient to save
memory [5]. This solves the fixed and fractional rate problems, but the implementation is not
as efficient as it could have been because of the linear interpolation on the impulse whose
width may vary depending on the rate. This very specific point will be addressed later in this
document.

We can give attributes to characterise response of polynomial and FIR interpolation:

• Transition bandwidth. The part in the passband affects its flatness. The part in the
stopband creates aliasing.

• Amplitude of the first side-lobe. Lobes are images of the passband replicated in the
higher zones of the spectrum, hence creating aliasing.

• Slope of the lobe top attenuation, can often be measured in dB/octave.

Copyright 2003-2005 – Laurent de Soras Page 5/28

THE QUEST FOR THE PERFECT RESAMPLER

2.2 MIP-mapping

Additionally, interpolators are often used in conjunction with MIP-mapped samples. This
technique is borrowed from computer graphics where it is used to reduce the aliasing when
drawing textures on surfaces in 3D objects.

Document [8] gives a good definition: “MIP mapping features multiple images of a single
texture map at different resolutions to represent surface textures at varying distances from the
viewer's perspective: the largest scaled image is placed in the foreground and progressively
smaller ones recede toward the background area. Each scale difference is defined as a MIP map
level. MIP mapping helps avoid unwanted jagged edges (called jaggies) in an image that can
result from using bit map images at different resolutions. MIP comes from the Latin multum in
parvo, meaning a multitude in a small space.”

MIP-mapped bitmaps.

Thus, the rendering engine has not to average the colours of a whole area of a distant
texture to compute a given screen pixel. The right averaging is pre-calculated in each level.
This is exactly the same principle with sounds. The original sample exists in many levels. Each
is optimally low-pass filtered and decimated at a given sampling rate. Generally they are
octave-spaced.

Five audio MIP-map levels, from 0 to 4.

MIP mapping reduces drastically the aliasing while upsampling with a high ratio, but high
ratio become less and less needed with multi-layer sample banks, where each note of an
instrument is sampled and stored separately. It remains entirely useful with wavetable
synthesis where the “analogue” waveform shape is not affected by the pitch. However, MIP
mapping does not completely remove aliasing, especially the one created by the interpolator.

2.3 Oversampled sample source

As depicted in [1] and [2], polynomial interpolator performances are dramatically improved
on oversampled input data, where only a small part of the full spectrum is occupied. This gives
a much flatter passband and very reduced lobes. The more oversampled, the better the
performances. The compromise is an important increase of the room taken in memory.
Oversampled source is often used partially along with MIP mapping, increasing SNR obtained
with higher levels.

Copyright 2003-2005 – Laurent de Soras Page 6/28

THE QUEST FOR THE PERFECT RESAMPLER

3. Proposed solution

3.1 Overview

The method we are going to describe is a three-stage process, consisting of MIP mapping,
interpolation and downsampling. Suppose we want to resample by a factor r. Octave MIP
mapping pre-filters and decimates the sample, allowing r to be high and avoiding expensive
calculations. But if applied directly, an ideal interpolator would create aliasing by resampling
by a local factor 1 , or truncate the frequency content if 1 .

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency / Fn1

Original signal: MIP-map level 0
MIP-map level 1

-100

-80

-60

-40

-20

0

0 0.2 0.4 0.6 0.8 1
Frequency / Fn1

Ideal
Straight level 1 -100

-80

-60

-40

-20

0

0 0.2 0.4 0.6 0.8 1
Frequency / Fn1

Ideal
Straight level 1

Top figure shows the MIP map spectrums for levels 0 and 1. Below, the figures show both ideal
and level-1 interpolations. Left: r=3 (=3 /2) and right: r=3 /2 (=3 /4) .

The interpolator runs at twice the sampling rate of the output, doubling the frequency
content capacity. From now, we call  the ratio used to interpolate MIP map; it depends on
the chosen level and the oversampling factor. Thus by choosing a MIP map level in order to
make ≤1 , Shannon principle is not violated. Aliasing can be theoretically avoided by low-
pass filtering correctly during downsampling. And because final bandwidth is half the
bandwidth of the 2x-oversampled signal, choosing ≥1 /2 does not truncate the sample
frequency content. Therefore the constraint is ∈[1/2 ;1] . Spacing MIP maps by octave is
sufficient to always find a MIP map and a  satisfying this constraint for a given resampling
factor r.

Copyright 2003-2005 – Laurent de Soras Page 7/28

THE QUEST FOR THE PERFECT RESAMPLER

-100

-80

-60

-40

-20

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency / Fn1

Rho = 0.5
Rho = 1.0

Interpolation at 2x-oversampling. The dashed line shows the output Nyquist frequency.

The interpolator is a FIR. For maximum performances, it has a fixed bandwidth and is not
scaled to lower the cutoff frequency in the case 1 . Oversampling makes this kind trick
useless, as we showed above. The FIR is stored in memory as a polyphase windowed impulse.
Its coefficients are linearly interpolated in real-time to produce a very accurate interpolator.

The final stage is the 2x-downsampling. This is a polyphase implementation of an efficient
elliptic IIR half-band filter and decimation, described in [9]. This is the only part of the process
which is not linear-phase.

Resampler overview.

3.2 MIP mapping

MIP mapping is the first stage of the process. For the maximum efficiency, it has to be done
off-line, once before any other processing. As we showed previously, optimal use of the system
is reached when each MIP map level is spaced from its neighbours by an octave. The first level
is obviously the original sample. To obtain every next level, we filter the current one with a
half-band filter and decimate it by 2. The total amount of required memory does not exceed
twice the original sample size.

Copyright 2003-2005 – Laurent de Soras Page 8/28

MIP-Mapping MIP-Map
selection Interpolation Down-

sampling

Pre-calculation Real-time rendering

Sample
data

Resampling
rate r

THE QUEST FOR THE PERFECT RESAMPLER

Cascade of half-band filters and decimators producing MIP-map levels

It is important to keep the half-band filter linear-phase. Indeed, when switching from one
MIP map level to another because of a variable resampling rate, a phase distortion between
both levels would create a discontinuity in the signal. Thus, FIR filtering is the simplest method
to proceed here. We need a good filter here because there is almost no headroom. We assume
that calculation time is not important as the filtering is done once, during the system set-up.
Filter has to be designed in order to make the passband as flat as possible, transition band the
smallest and rejection band the lowest. Several methods can be used, such as Parks-McClellan
algorithm [10] (also known as Remez Exchange) or sinc impulse truncated by a Dolph-
Chebyshev window [7]. One or two hundred of taps would do the job correctly.

As filter data may be long, it is recommended to implement the convolution using a FFT with
the overlap-add or overlap-save method [11]. Also, resolution issues must be taken into
account. Indeed, storing the samples with the minimum necessary bitdepth and reusing them
afterwards to generate the subsequent stages may accumulate roundoff errors. Instead,
process every level simultaneously with maximum resolution, reducing the bitdepth only at the
final stage to store the samples into memory. Here, dithering could help to save some bits of
precision [12]. However, noise shaping is not recommended for the reasons given in [13].

Also, the FIR filtering introduces a delay. This delay has to be compensated either by
truncating the beginning of each level or by re-indexing the sample arrays, in order to keep an
uniform time reference between MIP map levels.

At playback time, the MIP map level index can be defined by:

l r =max 0, floor log2r  (3.2-1)

Where r is the resampling factor and floor  x denotes the greatest integer less than or
equal to x - the floor function. 0 is the index of the original sample, 1 is 2x-downsampled, 2 is
4x-downsampled, etc. From that, we can deduce the local resampling factor  :

= r
q⋅2l r 

 (3.2-2)

Where q is the oversampling factor of the interpolation stage, in our design. We can also
deduce the number of levels to generate given the maximum value for r.

In the extreme case, in which the levels are produced down to reach a single-sample table,
this MIP-mapping will occupy twice the original sample size in memory. Indeed:

S n=S S
2
 S

4
 S

8
...=S∑

k=0

∞

1
2 

k

=S 1

1 −1
2

=2 S
 (3.2-3)

Copyright 2003-2005 – Laurent de Soras Page 9/28

↓ 2

Sample
data

↓ 2

↓ 2

L0

L1

L2

L3

THE QUEST FOR THE PERFECT RESAMPLER

In common use cases, and with the arrival of massive multi-sample instrument banks,
algorithm does not need to reach such high sampling ratio. Often, only two levels are enough
(0 and 1), occupying as much memory as one and a half times the size of the original sample
data.

3.3 Interpolator design

We have chosen to implement the interpolator as a FIR because of its flexibility in response
curve. SIMD instruction sets of modern CPUs strongly improve the FIR performances by
executing several multiplications and additions simultaneously, whereas they are less efficient
on polynomial interpolator implementation.

Unlike many interpolators based on FIR design, ours has a fixed cutoff frequency. It is not
really a low pass filter, because the cutoff is set to the Nyquist frequency of the sample
(actually the current MIP map level). Indeed, we need to preserve the whole spectrum.
Because of the oversampling, interpolated sample content will never go over the destination
Nyquist frequency (F N1). The goal here is to reconstruct the exact continuous signal and to
sample it at the relative rate  .

Note that ≤3/2 is theoretically the real upper bound to avoid aliasing with 2x-

oversampling. With this hypothesis, the maximum content frequency reaches virtually 3F N2 /2
and aliases to F N2 /2 . Therefore, the alias part of the oversampled signal remains always

above F N2 /2 =F N1 and will be completely discarded by subsequent downsampling. Or
conversely, 3 /2 is a sufficient oversampling factor to use octave-spaced MIP-mapped
samples. However we keep this headroom for the interpolator transition band, so it can extend
to 3F N2 /2 without audible effect. Moreover, 3 /2 x-oversampling requires a non-integer
number of input samples per output sample, which can complicates things a bit if samples
have to be outputted in odd-length blocks (it requires buffering). This problem does not appear
with 2x-oversampling.

-100

-80

-60

-40

-20

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency / Fn1

Ideal interpolation at =3/2 . Aliasing stops above F N1 .

Copyright 2003-2005 – Laurent de Soras Page 10/28

THE QUEST FOR THE PERFECT RESAMPLER

-120

-100

-80

-60

-40

-20

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency / Fn1

Rho = 0.5
Rho = 1.0

Real-life interpolator response at =1 and use of the headroom for the transition band.

So the FIR is basically assimilated to a variable fractional delay intended to reconstitute
sample data for any fractional position. We put down:

• p=floor t  and d=t− p the integer and fractional decomposition of a sample position
t= pd . Obviously, p is integer and d∈[0 ;1 [,

• N an even integer representing the impulse response length ― approximately the number
of zero-crossings,

• GC t  the interpolator impulse response, centred on N /2 and defined in the range

[0 ;N [,
• x [p] the sample data for the current MIP map level,
• and xC t  the continuous function corresponding to the interpolated sample data.

We get:

xC  pd =∑
k=1

N

x[pk−N2]⋅GC N−kd  (3.3-1)

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
Time (samples)

Partial terms of the sum
Interpolated signal

Sample interpolation for {p ,d }={2,0.4} .
The grey curves show original sample's contributions to the sum.

GC t  is a continuous function. Actually we can consider it as a set of discrete functions
depending on a parameter d:

Gd [k]=GC kd  (3.3-2)

Therefore we use only one function Gd [k] to compute the value of a position. The formula
(3.3-1) becomes:

Copyright 2003-2005 – Laurent de Soras Page 11/28

THE QUEST FOR THE PERFECT RESAMPLER

xC  pd =∑
k=1

N

x[pk−N2]⋅Gd [N−k] (3.3-3)

The variable d is continuous. In concrete implementation, we cannot store in memory an
infinite number of functions Gd [k] . For the practical implementation, we quantise d and
assign it two basic parameters:

• The number of taps per phase. For a given fractional position, a phase of the FIR is
selected and convolved with the sample data. This is the N parameter already mentioned.

• The number of phases M, equally spaced in the range [0 ;1 [.

The N parameter directly impacts the steepness of the curve in the transition band and the
ripples in the passband and stopband, as in every static FIR filter design. When all the phases
are interleaved and sorted by ascending time, it gives a global impulse whose cutoff frequency
is F N /M (frequency related to the MIP-map level).

0

0.5

1

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Time (samples)

d = 0
d = 1/4
d = 1/2
d = 3/4

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Time (samples)

Top: all the Gd [k] curves for M=4 . Below, the interleaved impulse.

So we are now focused on the design of a “brick-wall” low-pass filter of length N×M .
There are several methods to do it. The preferred way is probably the Parks-McClellan
algorithm, but the simplest is probably the windowed sinc and works well for long FIR. The
Dolph-Chebyshev window provides equiripple in the stopband and good transition bandwidth
properties. Note that the stopband ripple specification provides guaranteed attenuation, but in
concrete case, it may be a bit too much. One has to check the actual frequency response with
an FFT and adjust recursively the stopband specification to optimise the transition bandwidth.

Another thing to consider: we left headroom by constraining the oversampling rate and 
value range. This allows the main lobe to extend to 3F N2 /2 . So we can shift up the filter
cutoff in order to let the main lobe reach this frequency. Thus, we maximise the flatness of the
passband.

Copyright 2003-2005 – Laurent de Soras Page 12/28

THE QUEST FOR THE PERFECT RESAMPLER

-100

-80

-60

-40

-20

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency / Fn1

Normal
Shifted

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency / Fn1

Normal
Shifted

Taking advantage of the headroom to improve filter flatness in the passband.
Left figure: =1 /2 , right figure: =1 .

One more improvement can be done, considering that the passband does not extend exactly
up to Nyquist. Real-world requirements would include a little headroom between the end of the
passband and Nyquist frequency. Indeed, the very top end of the spectrum is generally filled
with garbage produced by non-brickwall anti-aliasing filters. We put FCP as the passband end,

as fraction of the cutoff frequency, here F N1 . Taking the aliasing into account for =1 , we
can calculate the optimal stopband starting frequency:

FCS=
4 −FCP

2
 (3.3-4)

With FCP=0.9 , which is a rather common requirement, we obtain FCS=1.55 . If Parks-
McClellan algorithm is used, these frequencies bound the pass- and stop-bands.

3.4 Interpolating the interpolator

Obviously quantising the number of functions G is equivalent to quantise the fractional
position d. As shown in [3], the number of phases (M) influences the SNR with a rate of 6
dB/bit. Below is the compared responses of such a quantised interpolator, with N=16 and
different values for M:

Copyright 2003-2005 – Laurent de Soras Page 13/28

THE QUEST FOR THE PERFECT RESAMPLER

-120

-100

-80

-60

-40

-20

0

0.1 1 10 100
Frequency / Fn1

0

0.5

1

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Time (samples)

M = 4

M = 4

-19.9 dB
M = 16

M = 16

-32.4 dB

M = 64

M = 64

-43.8 dB

Continuous interpolator

Continuous interpolator

-112.6 dB

Impulse response of discrete and continuous interpolators

It clearly shows a huge gap between the continuous and discrete versions of the
interpolator. The continuous interpolator’s side-lobes are only caused by the impulse
windowing whereas origin of the main side-lobes of the discrete interpolators is the phase bit
reduction. In these conditions, we have to increase M to unacceptably high values to get a
decent SNR. That is why it is necessary to interpolate correctly the functions Gd [k] . The
different phases constituting the whole impulse can be numbered from 0 to M−1 . We
introduce the integer variable q:

q=floor d⋅M  (3.4-1)

The way we round d⋅M is not the most appropriate to use directly Gq/M [k] ― it would
have been better to round it to the nearest integer, halving the phase error and gaining 6 dB of
SNR. Our choice is the linear interpolation, so this rounding is actually a logical move. So we
finally define the interpolated function G Id [k] as:

G Id [k]=G q
M

[k]d⋅M−qG q1
M

[k]−G q
M

[k] (3.4-2)

Formula (3.4-2) makes use of G1 [k] , which is not defined. According to the (3.3-2)
definition, we extend the range of the class of G functions to ensure the coherence of (3.4-2):

G1 [k]=GC k1 (3.4-3)

Therefore:

G1 [k]=G0 [k1] (3.4-4)

This class of functions G Id [k] gives us the possibility to define a new continuous function
for the interpolator:

Copyright 2003-2005 – Laurent de Soras Page 14/28

THE QUEST FOR THE PERFECT RESAMPLER

GC2kd =G Id [k] (3.4-5)

Below, GC2t  for N=16 and M=4 . We evaluate its frequency response and compare it
to the quantised one. Obviously M=4 is too low for a real-world application, but the purpose
here is to show clearly the principle and its benefits.

-120

-100

-80

-60

-40

-20

0

0.1 1 10
Frequency / Fn1

Drop-sample (discrete)

-19.8 dB
Linear interpolation

-38.5 dB

Frequency responses of GC2t  and its discrete version for N=16 and M=4 .
Shaded curves show the effect of aliased side-lobes.

With M=128 , the aliasing is now rejected in the -100 dB oblivion:

-120

-100

-80

-60

-40

-20

0

0.1 1 10 100 1k
Frequency / Fn1

Drop-sample (discrete)

-50.7 dB

Linear interpolation

-100.2 dB

Frequency responses of GC2t  and its discrete version for N=16 and M=128 .

This new interpolator scheme is equivalent to a polynomial interpolator in presence of
oversampled input, where M is the oversampling factor. If you need extra-low aliasing and care
more about memory than computational cost, linear interpolation may not be enough. See [1]
and [2] for deeper discussion on this topic.

3.5 The case r < 1

We have essentially dealt with the aliasing problem caused by the case r > 1. We took
advantage of the oversampling to lower the requirement on interpolation filter transition
bandwidth. In conjunction with MIP-mapping, we could have achieved a very steep filter for a
relatively low real-time cost.

However things are a bit different when r is less than 1. Indeed, the interpolation filter slope
is not as steep as it should be. The top end frequency content, which is naturally mirrored and
replicated over r⋅F N , is not filtered enough. Therefore we need to use a steeper filter.
Actually, we have two solutions: post-filtering the signal with an efficient IIR (elliptic) low-pass
filter, or make the interpolation filter stronger to reach a much thinner transition band.

Copyright 2003-2005 – Laurent de Soras Page 15/28

THE QUEST FOR THE PERFECT RESAMPLER

The first option is very attractive. Elliptic IIR filters are quite cheap and we can obtain a
steep slope for a relatively low number of MACs. But it has some drawbacks: lack of phase
continuity with the case r1 , problems with cutoff frequencies close to Nyquist and recursive
structure preventing the parallelisation of operations. None of these problems are insoluble,
but add significant complexity to the solution.

The second option may appear outrageously computation-greedy. Actually this is not totally
true. With r1 , we are not facing anymore the aliasing problem, occurring even using an
ideal low-pass filter for interpolation. Here, aliasing would have been caused only by a non-
brickwall filter, letting pass too much mirrored frequencies, some of them exceeding Nyquist
limit. If the filter slope is steep enough, we do not need the oversampling trick, thus saving
half the calculation time. This time can be reused to achieve this very brickwall filter we need.

If this solution is simple and quite efficient, it is far from perfect. Indeed, the brickwall-ness
of our filter has its own limits. With twice as many taps, we can only reduce the transition band
by a factor of two, not much more. This solution is acceptable if we have quite large transition
bandwidth requirement, or if we are ready to make a compromise against ripples and
attenuation.

However we have another asset, one more compromise to make. This one is on memory
requirement. Our interpolation filter specifications are relative to the original signal, not
directly its frequency content. If the latter does not occupy the full bandwidth, spectrum of the
interpolated result will have "holes", corresponding to the absence of content in the original
signal. By pre-oversampling sample data, we can reduce the areas where the filter has to
actually filter, thus producing better interpolators. This is the topic of [1] and [2] regarding
polynomial interpolation, but we can apply the same theory to FIR interpolators.

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Frequency / Fn

Interpolation filter requirement for 2x-pre-oversampled data.

How much do we need to oversample the input? Not much. Every additional sampling
bandwidth immediately benefits to the transition band. Therefore 2x-oversampling is largely
enough. If memory is a crucial concern, we can reduce the oversampling factor down to about
4 /3 . Indeed the filter designed for r1 has roughly a F N /2 transition bandwidth. This is
the same width as the free band left by the mirroring of the spectrum after interpolation,
between 3F N /4 and 5F N /4 .

Copyright 2003-2005 – Laurent de Soras Page 16/28

THE QUEST FOR THE PERFECT RESAMPLER

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Frequency / Fn

Interpolation filter requirement for 4 /3 x-pre-oversampled data.

Thus, we add one more oversampled MIP-map level. We could be tempted to use
oversampled MIP-map everywhere, especially for the case r1 . But doing this, we need to
increase  in order to raise the significant band. This means that real-time oversampling
allows less headroom for the filter, so more taps, more computations are required. Exactly the
opposite of what we want...

We can also mention a third possibility: not changing anything to the algorithm. It is
possible to live with the mirrored spectrum top, and it gives the possibility to get rid of the
oversampling as soon as r2 /3 .

3.6 Final downsampling

The last thing we have to do is to get back from 2x-oversampling to the final sampling rate.
We will use the polyphase IIR half-band filter described in [9] because of its efficiency. The
phase distortion is less important here, and anyone needing to keep it linear can use classic
polyphase FIR filters; this kind has been already described in the literature [4].

Theoretically, we have not any more headroom for the transition band here. However, sound
signal is never critically sampled. A small part of the spectrum cannot be heard and the band
above 20 kHz up to Nyquist frequency may be altered without noticeable effect. For example,
sampling rate of 44.1 kHz leaves us a 4.1 kHz range for the transition between passband and
stopband. Note that this headroom can also be used to widen a bit the transition band of the
MIP-map and interpolation filters.

Copyright 2003-2005 – Laurent de Soras Page 17/28

THE QUEST FOR THE PERFECT RESAMPLER

4. Implementation

4.1 A complete example

4.1.1 Requirements

In this section, we will design an interpolator built with the following specifications
regarding audio quality:

• Passband defined from 0 to
9

10
F N1

• Aliasing attenuation below -85 dB in the passband
• Passband ripple below 0.1 dB

We can also add obviously these loose constraints:

• Low memory use
• Low CPU use
• Real-time rendering
• Time-varying resampling rate

At 44.1 kHz sampling frequency, the passband extends up to 19.8 kHz, which is more than
enough for audio-range applications. We will not give a magic formula to produce the best
interpolator for a given specification. Instead, we can proceed by trial and error. It works fine
within the frame of the method described above. The result will be probably not optimal, but
will have a very simple and efficient implementation, hard to outclass given the specification.

4.1.2 MIP-mapping and data storage

As suggested in the previously described method, we will work with octave-spaced MIP-
mapped samples and 2x-oversampling.

The MIP-map data type depends on the input data. In case of integer 16-bit samples, there
is no real need to go to 32-bit integer or floating point because the noise floor is already set to
approximately -96 dB (16-bit resolution). However one needs to be careful. If original data fits
exactly in the data range, reaching 0 dB level, the resampled data will likely overflow. Take the
worst case: the signal is a sinc centred exactly between two samples and occupying the
whole range. A perfect interpolation would produce important ripples on the positive side (on
the negative side too, but lesser), reaching a maximum value close to 2! So it is recommended
to keep at least 6 dB of headroom regarding this issue, or more simply, augmenting the data
capacity by one bit. In our case, because final SNR will be 85 dB, it is possible to use 16-bit
integer MIP-map data, based on original 16-bit normalised sample data, reduced to 15-bit
resolution in order to gain the necessary 1-bit headroom.

Copyright 2003-2005 – Laurent de Soras Page 18/28

THE QUEST FOR THE PERFECT RESAMPLER

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (samples)

The need for headroom in signal interpolation.

4.1.3 MIP-map filter design

We use the Parks-McClellan algorithm to design the half-band filter (FC=F N /2) in order to
match the following prototype for the frequency response:

• 1 between 0 and
9

10
FC , the passband.

• 0 between
11
10
FC and F N , the stopband.

• Weight of 100 for the stopband ripples, relative to the passband ones.

We obtain the following filter characteristics:

• Number of coefficients: 81
• Width of the symmetric transition band: F N /10
• Passband ripple: 0.04 dB
• Stopband attenuation: -92.2 dB
• Overall group delay: 40 samples (linear phase)

The ripples are lower than the requirements because we have to take into account the
subsequent passband pollution by further processing.

-120

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency / Fn

MIP-map filter frequency response

To filter the sample, we will use FFT to do the convolution in order to achieve smallest set-
up time as possible. We must use a FFT length greater than 81. With 128, we can process only

Copyright 2003-2005 – Laurent de Soras Page 19/28

THE QUEST FOR THE PERFECT RESAMPLER

48 samples per pass, which may be a waste of performance. 256-point FFT seems more
appropriate. Also, 192 points are fine for any radix-3 FFT algorithm. The filter can be stored in
the frequency domain, ready to be multiplied with frequency data, to avoid unnecessary
operation. Again, we need to add a word about resolution. 16-bit integer FFT will not be
enough, it is necessary to compute everything with at least 24-bit integer or 32-bit floating-
point data and convert back to 16 bits at the final stage. Bit reduction will be done with a
simple TPDF dithering.

4.1.4 Interpolation filter design, r > 1

We now need to define the most important parameters, N and M. N influences the overall
quality of the interpolator, and more exactly the transition bandwidth. M regulates the level of
aliased images caused by the interpolation of the interpolator. Given our experiments, a
combination of N=12 and M=64 are well suited to match the requirements.

Again, we use the Parks-McClellan algorithm to design the interpolation filter, whose cutoff
is located at FC=F N /M . We deduce the filter specification from equation (3.3-4) and feed the
algorithm with the following prototype:

• Number of coefficients: N⋅M−1 =767
• 1 between 0 and 9 FC /10 , the passband.

• 0 between 31FC /20 and F N , the stopband.
• Weight between passband and stopband determined by -0.08 dB / -85 dB ripples.

We specified only 767 coefficients to the algorithm. This is motivated by a phase issue: it is
easier to operate with an odd-order filter, because the group delay is integer, thus easily
controlled. It is possible to achieve the same results with an even-order filter, but it needs
additional phase tweaking during the interpolation to smooth transitions between the MIP-map
levels. The resulting filter has these properties:

• Transition band between: 9 FC /10 and 31FC /20
• Passband ripple: 0.08 dB
• Stopband attenuation: -85.0 dB
• Overall group delay: 384 samples (linear phase), 6 with individual Gd [k] functions.

-100

-80

-60

-40

-20

0

0.1 1 10 100 1k
Frequency / Fn1

-85.0 dB

Frequency response obtained using linear interpolation.

Copyright 2003-2005 – Laurent de Soras Page 20/28

THE QUEST FOR THE PERFECT RESAMPLER

-1

-0.8

-0.6

-0.4

-0.2

0

0.1 1
Frequency / Fn1

Zoom on the passband.

We now need to deal with the storage of the impulse in memory. The most efficient method
is probably to store it as individual, de-interleaved Gd [k] functions. Each one represents a FIR
impulse, which can be read from memory and block-wise computed with MIP-map data, using
SIMD processor instructions. Because we need to perform a linear interpolation ― equation
(3.4-2), it is smart to pre-calculate the difference between two consecutive Gd [k] functions.

The last difference function, corresponding to G1 [k] , is obtained by shifting G0 [k] one
sample to the left as shown in (3.4-4), and completing with a 0 at the end.

We store the tables by interleaving the Difference functions with the Impulse functions in
order to take advantage of the SDRAM "burst mode". Indeed, most DAWs run samplers with
other effects or virtual instruments. Each virtual device of the audio network outputs a N-
sample block when comes it turns. Thus data may not be present in the cache at the beginning
of the processing, generating a cache miss and requiring a SDRAM access. Grouping
simultaneously accessed data helps to minimize the slowing down.

Regarding the data format, impulse can be stored as 16-bit integers if normalized properly
before. Our tests have shown that it has a minor impact on stopband rejection, diminishing it
by a half dB, which is acceptable here. A bit-flipping method based on genetic algorithms such
as Differential Evolution [14] may help to fix the problem. Actually the choice between 16-bit
and 24- or 32-bit data is more a matter of implementation and performance, specific to the
architecture, rather than a quality issue. However 16-bit accumulators are not enough for the
filtering, they would require a few bits more to guarantee 85 dB of SNR.

-100

-80

-60

-40

-20

0

0.1 1 10 100 1k
Frequency / Fn1

-84.5 dB

Effects of 16-bit coefficient quantification on interpolator frequency response.

Copyright 2003-2005 – Laurent de Soras Page 21/28

THE QUEST FOR THE PERFECT RESAMPLER

Interpolation. Grey-background rectangle represents the program memory, containing the
impulses Gd [k] and their differences. Bottom part of the diagram shows the linear

interpolation of the FIR, followed by its convolution with the sample. Data are grouped by
packets of 4 samples, to show the possible use of SIMD instructions and the processing

parallelisation. Note that one has to revert impulses and differences in order to index them
correctly (the N /2 −k of the convolution formula).

4.1.5 Design for r < 1

As we stated in our analysis, the case r1 has a pretty efficient solution: using an
additional MIP-map level, oversampled at a rate 4 /3 . This is probably the ideal solution for a
system where memory use and bandwidth are not an issue. However this is not always the
case. Switching quickly between r1 and r1 , i.e. in a vibrato, or playing a chord will
consume a lot of memory bandwidth. We can reduce it by not adding this MIP-map level.
Moreover the implementation adds a bit of complexity. Mainly for the sake of simplicity, we are
going to look at the other solution we pointed: a steeper filter.

To keep the computational cost well balanced between both resampling ratios, we choose a
double filter length without oversampling. Here we are cheating with the original interpolator
characteristics we specified. Indeed the steepness is not enough and we cannot guarantee a
perfect 90 % bandwidth. We need to trim it a bit, and to make the attenuation more
progressive. The Parks-McClellan algorithm is set up with the following specifications for
N '=2N=24 and M=64 :

Range Weight Actual ripple or
attenuation (dB)

[0 ;0.85FC] 1 0.1

[1.14FC ;1.99FC] 64 -81

[2FC ;3.99FC] 128 -87

[4 FC ;F N] 256 -93

Copyright 2003-2005 – Laurent de Soras Page 22/28

Impulses Impulse differences

0
1

q

M – 1

G1/M – G0
G2/M – G1/M

G1 – G(M-1)/M

Fractional position d.M – q
+

x

x
Sample data (MIP-map level)

Interpolated sample

+

THE QUEST FOR THE PERFECT RESAMPLER

4.1.6 Downsampling filter

The half-band IIR filter is designed with these specifications:

• Stopband attenuation: -90 dB
• Passband width: 9 FC /10

It results in these effective characteristics:

• 7 coefficients
• Width of the symmetric transition band: F N /10
• Effective stopband attenuation: -93.3 dB
• Insignificant passband ripple
• Group delay after decimation:

• 18 samples at 9F N1 /10 ,

• 2.3 samples at F N1/2 ,
• 1.7 samples close to 0 Hz.

The group delay looks impressive in the spectrum top end, but actually attenuates quickly
as frequency decreases. The coefficients support very well the quantification, therefore it is
acceptable to store them in 16 bit if required. Anyway it is probably better to keep a higher
resolution for state variables.

For the case r1 , we do not oversample, but need to ensure the phase continuity with the
other case. We proceed by feeding the downsampling filter with the non-oversampled signal, in
which we insert zeros between each two samples.

4.1.7 Transitions between MIP-map levels

Changing the resampling ratio r sometimes requires changing the MIP-map level currently in
use. Theoretically, the change is almost transparent in the final signal; both frequency
contents are the same at the frontier. However, it makes harmonics appear or disappear
instantaneously in the oversampled part of the spectrum, resulting in discontinuities. These
discontinuities are broadband and impact the unfiltered, low part of the spectrum, producing
audible clicks.

We have two easy solutions to workaround the problem. The first one consists in not
changing the MIP-map level once it is has been selected, assuming the pitch changes are
slight, and the aliasing or high frequency loss being considered as negligible.

Second solution involves cross-fading signals produced by both MIP-map levels. This
method actually uses the first solution (MIP-map used out of its own pitch range) with the
previous and next MIP-map. The time needed to run a full cross-fade requires limiting the rate
of the pitch changes, or to delay subsequent level changes after the end of the current cross-
fade. The major drawback of the cross-fading method is the doubling of the calculations.

Note that transition between r1 and r1 is exactly the same issue as filter
characteristics change.

Copyright 2003-2005 – Laurent de Soras Page 23/28

THE QUEST FOR THE PERFECT RESAMPLER

4.1.8 Performances

Regarding pure real-time DSP performance, the count per output sample is easy.
Interpolator FIR is made of 12 taps, therefore 12 MAC. To generate this interpolator, we need
to interpolate two impulses with the formula y=x1 k  x2 −x1 . Because x2 −x1 is pre-
calculated, it involves one MAC per tap. So it is 12 MAC again, 24 MAC total. The interpolation
filter is running at 2x-oversampling, we need to multiply this by 2. Then the downsampling
filter requires 1 MAC per coefficient and output sample, so it is 7 MAC here.

Grand total is 55 MAC per output sample.

Obviously this cannot measure the real performances of the algorithm. We need to take into
account the logic: MIP-map level selection, phase indexing, data loading and storing, etc.
Anyway they are quite light in comparison with the calculation. Because of the vector structure
of the data, dependencies between intermediate results are relatively low. Therefore it is
generally possible to operate logic and computation in parallel. Moreover, it is the perfect
opportunity to use SIMD instruction sets.

If many voices have to be mixed together, it may be more efficient to mix them before
downsampling, although it is counterintuitive.

Besides the MIP map load, memory occupation can be roughly expressed by the following
formula:

S=2NN ' ⋅M⋅D (4.1.8-1)

Where D is the coefficient size, in byte; i.e. 4 for 32-bit floating point data. In our case,
interpolator coefficients occupy 18 kB of memory.

We successfully implemented the proposed method and came out with an average speed of
178 clocks per sample on a classic desktop computer, which is largely enough for real-time
sample playback. This was done in realistic testing conditions, taking cache issues into
account. The program was written in pure standard C++, full 32-bit floating point processing,
without any assembly code or SIMD instruction. Thus, by optimising the critical parts using
these programming techniques, one can effortlessly triple or quadruple the data throughput.

4.2 Possible variations

In the previous section, we described an implementation of our method. This is not the only
possible one. We can tweak several parameters to fit particular requirements. In this section
we will list - not exhaustively - some possible alterations:

• Number of phases (M). Increasing it rejects the aliasing caused by interpolation side-
lobes, but requires more memory for the filter.

• Phase length (N). Increases the overall filter quality, the compromise between
ripples/rejection and width of the transition band.

• Phase interpolation. We choose a linear one, but one also can use higher order
polynomials to save memory against calculations.

• Interpolation order. Depending on the context, it may be more efficient to interpolate
first two contiguous samples using the polyphase FIR, then to interpolate these samples
using the polynomial interpolator.

• Filter design method. It depends on the tools you have got! If you cannot use the
Parks-McClellan algorithm, go for windowed sinc. Classic fixed windows such as
Blackman-Harris have generally too high side-lobes; prefer parametric windows if
possible, like Dolph-Chebyshev or Kaiser.

Copyright 2003-2005 – Laurent de Soras Page 24/28

THE QUEST FOR THE PERFECT RESAMPLER

• Oversampling ratio. It is possible to lower the oversampling ratio to 3 /2 . It may
reduce the computations, but requires steeper interpolation filters. On the other hand one
can oversample at a higher rate to lower the filter requirements.

• MIP-map level spacing. Octave is easy to implement, but it is possible to choose
double- or half-octave spacing (or other ratio), changing the memory requirement. The
width of the filter transition band may be reduced, as well as the oversampling ratio. It is
even possible to get rid of the MIP-mapping if r stays low.

• Dynamic FIR adaptation. The FIR polyphase table may be changed depending on the
resampling rate. We did it for r1 and r1 , but it is possible to adjust this FIR for any
rate range. This would allow to get rid of the MIP-map tables, and even of the
oversampling section. This could be an important alternative to consider.

• Filter storage. Because of the symmetry of the impulse, one can store only half of it in
memory. However it is more complicated to fetch it at run-time.

• Phase pre-interpolation. Similarly, we could refuse to store the difference between two
phases, to save calculations or memory.

• Downsampling filter. It can also be tweaked if necessary. Especially if the oversampling
ratio is not a power of two, it may be useful to use a FIR instead of an IIR. FIR filters are
particularly efficient for low resampling ratios.

• Case r1 . Alternative methods have been evocated in a previous section.

• MIP-map switching. Same as above.

• Output sample rate. This is an important point as filter requirements can be completely
different depending on the output sample rate. 44.1 kHz leaves 2 kHz of headroom,
whereas 48 kHz doubles this headroom. Not speaking about extended rates such as 88.2
kHz, 96 kHz or higher. Whether to widen the transition band is a matter of requirements
on the passband.

Copyright 2003-2005 – Laurent de Soras Page 25/28

THE QUEST FOR THE PERFECT RESAMPLER

5. References

[1] Polynomial Interpolators for High-Quality Resampling of Oversampled Audio
Olli Niemitalo, August 2001
http://www.biochem.oulu.fi/~oniemita/dsp/deip.pdf

[2] Performance of Low-Order Polynomial Interpolators in the Presence of
Oversampled Input
Duane K. Wise & Robert Bristow-Johnson
AES 107th convention, September 1997

[3] The Effects Of Quantizing The Fractional Interval In Interpolation Filters
Jussi Vesma, Francisco Lopez, Tapio Saramäki & Markku Renfors[Broken link]
http://www.es.isy.liu.se/norsig2000/publ/page215_id108.pdf

[4] Multirate Digital Signal Processing
Ronald E. Crochiere and Lawrence R. Rabiner
Prentice-Hall

[5] Digital Audio Resampling Home Page
Julius O. Smith III, January 2000
http://ccrma-www.stanford.edu/~jos/resample/resample.html

[6] Windowing Functions Improve FFT Results
Richard Lyons
Test & Measurement World, June/September 1998, pp. 37-44
http://www.e-insite.net/index.asp?layout=article&articleId=CA187572
http://www.e-insite.net/index.asp?layout=article&articleId=CA187573

[7] The Dolph-Chebyshev Window ― A Simple Optimal Filter
Peter Lynch, January 1996
http://www.maths.tcd.ie/~plynch/Publications/Dolph.pdf

[8] MIP-mapping
http://whatis.techtarget.com

[9] Polyphase Filter Designer in Java
Artur Krukowski
http://www.cmsa.wmin.ac.uk/~artur/Poly.html

[10] FIR Digital Filter Design Techniques Using Weighted Chebyshev
Approximations
L. R. Rabiner, J. H. McClellan, and T. W. Parks
Proc. IEEE 63, 1975

[11] Computational Improvements To Linear Convolution With Multirate Filtering
Methods
Jason R. VandeKieft, April 1998
http://www.music.miami.edu/programs/mue/Research/jvandekieft

[12] The Mathematical Theory of Dithered Quantization
Robert A. Wannamaker, Ph.D. thesis, July 1997
Department of Applied Mathematics, University of Waterloo, Canada
http://audiolab.uwaterloo.ca/~rob/phd.html

[13] Whither Dither - Experience with High-Order Dithering Algorithms In The
Studio
James A. Moorer and Julia C. Wen
AES 95th convention, October 1993
http://www.jamminpower.com/main/articles.jsp

[14] Differential Evolution homepage
Kenneth Price and Rainer Storn
http://www.icsi.berkeley.edu/~storn/code.html

Copyright 2003-2005 – Laurent de Soras Page 26/28

THE QUEST FOR THE PERFECT RESAMPLER

6. Appendices

6.1 Filter coefficients

double iir_polyphase_lpf = {
0.0457281, 0.168088, 0.332501, 0.504486,
0.663202, 0.803781, 0.933856 };

double fir_halfband_lpf [81] = {
0.000199161, 0.000652681, 0.000732184, -5.20771e-005,
-0.0007641618462, -5.638448426e-005, 0.001043007134, 0.0002618629784,
-0.001427331739, -0.0005903598292, 0.001886374043, 0.001076466716,
-0.00241732264, -0.001750193532, 0.003009892088, 0.002655276516,
-0.003657747155, -0.003838234309, 0.004347045423, 0.005358361364,
-0.005067457982, -0.007294029088, 0.00579846115, 0.009746961422,
-0.006524811739, -0.01286996135, 0.007226610031, 0.01690351872,
-0.007884756779, -0.02225965965, 0.008479591244, 0.02971806374,
-0.008993687303, -0.04095867041, 0.009411374397, 0.06037160312,
-0.009719550593, -0.1041018935, 0.009908930771, 0.3176382757,
0.4900273874, 0.3176382757, 0.009908930771, -0.1041018935,
-0.009719550593, 0.06037160312, 0.009411374397, -0.04095867041,
-0.008993687303, 0.02971806374, 0.008479591244, -0.02225965965,
-0.007884756779, 0.01690351872, 0.007226610031, -0.01286996135,
-0.006524811739, 0.009746961422, 0.00579846115, -0.007294029088,
-0.005067457982, 0.005358361364, 0.004347045423, -0.003838234309,
-0.003657747155, 0.002655276516, 0.003009892088, -0.001750193532,
-0.00241732264, 0.001076466716, 0.001886374043, -0.0005903598292,
-0.001427331739, 0.0002618629784, 0.001043007134, -5.638448426e-005,
-0.0007641618462, -5.20770713e-005, 0.0007321838627, 0.000652681315,
0.0001991612514
};

double fir_interpolator_1 [64 * 12] = {
0, 0.001742279734, 0.0003227324025, 0.0003504220639,
0.0003784201858, 0.0004060523799, 0.000433560667, 0.000460242331,
0.0004863371066, 0.0005111187936, 0.0005348296736, 0.0005567178399,
0.000577003141, 0.000594868077, 0.0006105017978, 0.0006229741377,
0.0006324574426, 0.000637955229, 0.0006397031985, 0.0006367227753,
0.0006294231227, 0.0006168285476, 0.0005994721071, 0.000576164941,
0.0005473310058, 0.0005113181524, 0.0004686499247, 0.0004176613044,
0.000360179431, 0.000294828955, 0.0002239625091, 0.0001397615714,
4.917075029e-005, -4.906454506e-005, -0.0001586730304, -0.0002759525972,
-0.0004037611106, -0.0005403286683, -0.0006872050613, -0.0008432719479,
-0.001009559165, -0.001185183727, -0.00137082501, -0.00156565289,
-0.001770105534, -0.001983373564, -0.00220574127, -0.002436438721,
-0.002675609502, -0.002922412142, -0.003176764646, -0.003437642969,
-0.003704785626, -0.003977186249, -0.004254645554, -0.004536168589,
-0.004821306638, -0.0051085353, -0.005397156872, -0.005686020159,
-0.005975209561, -0.006262452042, -0.006546344761, -0.006827480141,
-0.007102792819, -0.007372232611, -0.007633943637, -0.00788688517,
-0.008129587034, -0.008360797821, -0.008579124816, -0.008783232512,
-0.008971721235, -0.00914319924, -0.009296252118, -0.009429483812,
-0.009541564083, -0.00963116255, -0.009697032537, -0.00973786063,
-0.009752387548, -0.009739324335, -0.009697580358, -0.009626088825,
-0.009523960257, -0.009390153133, -0.009223736719, -0.009023832733,
-0.008790026698, -0.008521722857, -0.008218257461, -0.007878933678,
-0.007504467131, -0.007093708517, -0.006647210362, -0.006165014615,
-0.005647212846, -0.005094386491, -0.004506902567, -0.003885599968,
-0.003231214068, -0.002544844667, -0.00182755147, -0.001080682372,
-0.0003055993791, 0.0004960207406, 0.001322467315, 0.002171720624,
0.003041773856, 0.003930379128, 0.004835267947, 0.005753857674,
0.006683530599, 0.007621410207, 0.008564704475, 0.009510380936,
0.01045533995, 0.01139613927, 0.0123295518, 0.01325220433,
0.01416068595, 0.01505101153, 0.01591999786, 0.01676380471,
0.01757851783, 0.01836076832, 0.01910650003, 0.01981223275,
0.02047409904, 0.02108852463, 0.02165179807, 0.02216040787,
0.02261085054, 0.02299979734, 0.02332394892, 0.0235801863,
0.0237654538, 0.02387693283, 0.02391195908, 0.02386807742,
0.0237429762, 0.02353457915, 0.02324103906, 0.0228608214,
0.02239262438, 0.02183534433, 0.02118814096, 0.02045058738,
0.01962257961, 0.01870419866, 0.01769581587, 0.01659837872,
0.01541303206, 0.01414098157, 0.01278441212, 0.0113452081,
0.009826081402, 0.008229855716, 0.006559784686, 0.004819464346,
0.003012819169, 0.001144170699, -0.0007818426856, -0.002760242962,
-0.004785736303, -0.006852724797, -0.008955278991, -0.01108715657,
-0.01324187199, -0.01541268359, -0.01759261257, -0.01977441632,
-0.02195062519, -0.02411358996, -0.02625557221, -0.02836865061,
-0.03044473373, -0.03247564125, -0.03445323438, -0.036369256,
-0.03821536833, -0.03998331928, -0.04166508141, -0.04325230996,
-0.04473714713, -0.04611169335, -0.04736816632, -0.04849918852,
-0.04949738927, -0.0503558772, -0.05106786765, -0.051627048,
-0.05202737026, -0.05226326572, -0.05232951832, -0.0522214062,
-0.05193460354, -0.05146539981, -0.05081054857, -0.04996742686,
-0.04893390401, -0.04770850047, -0.04629031953, -0.04467920731,
-0.04287556956, -0.04088051322, -0.03869581877, -0.03632406645,
-0.03376841422, -0.03103276272, -0.02812175712, -0.02504086042,
-0.02179601806, -0.01839411765, -0.01484270347, -0.01114988159,
-0.007324699964, -0.003376659821, 0.000683918981, 0.004846165968,
0.009098558205, 0.01342894118, 0.01782462363, 0.02227232605,
0.0267583219, 0.03126837881, 0.0357878146, 0.04030152292,
0.04479407263, 0.04924969032, 0.05365237905, 0.05798585405,
0.06223368171, 0.06637930212, 0.07040613857, 0.0742975011,
0.07803678014, 0.08160747482, 0.08499328207, 0.08817799363,
0.09114574369, 0.09388102591, 0.09636868824, 0.09859394674,
0.1005427553, 0.1022013392, 0.1035567907, 0.1045967585,
0.1053096883, 0.1056848338, 0.1057122442, 0.1053829182,
0.1046887854, 0.1036228114, 0.1021790258, 0.1003525021,
0.09813949524, 0.09553742354, 0.09254493804, 0.08916193185,
0.08538957045, 0.08123030902, 0.07668798651, 0.07176776518,
0.06647614661, 0.06082100909, 0.05481167793, 0.04845881893,
0.04177446192, 0.03477204034, 0.02746641332, 0.01987371878,
0.0120114516, 0.003898510203, -0.004445050075, -0.01299785294,
-0.02173724057, -0.03063949823, -0.03967960565, -0.04883163923,
-0.05806849217, -0.06736218009, -0.07668371714, -0.08600331368,
-0.09529038984, -0.104513663, -0.1136411693, -0.1226404465,
-0.1314784946, -0.1401219954, -0.1485372711, -0.1566904448,
-0.1645474937, -0.172074439, -0.1792372909, -0.1860022387,
-0.1923357307, -0.1982046325, -0.2035761834, -0.2084182126,
-0.2126992079, -0.2163884272, -0.2194558911, -0.221872701,
-0.223610932, -0.2246437585, -0.2249456736, -0.2244923915,
-0.2232611184, -0.2212305232, -0.2183808121, -0.214693907,
-0.2101533743, -0.2047446886, -0.198455083, -0.1912737755,
-0.1831919406, -0.1742028128, -0.1643016924, -0.1534860427,
-0.1417554206, -0.1291116623, -0.1155587919, -0.1011030852,
-0.085753021, -0.06951943703, -0.05241538944, -0.03445621409,
-0.01565946649, 0.003954984002, 0.02436513506, 0.04554676387,
0.06747348062, 0.09011675956, 0.1134461258, 0.1374289443,
0.162030763, 0.1872151458, 0.212943884, 0.2391770576,
0.2658730424, 0.2929886858, 0.3204793157, 0.3482989051,
0.3764001754, 0.4047346019, 0.4332526757, 0.4619038651,
0.4906368532, 0.5193995898, 0.5481394221, 0.5768031931,

0.6053374807, 0.6336885973, 0.6618027691, 0.689626244,
0.7171055053, 0.7441872751, 0.7708187431, 0.7969476598,
0.8225225065, 0.847492502, 0.8718078895, 0.8954199882,
0.9182812855, 0.9403455873, 0.9615681762, 0.981905798,
1.001316998, 1.019761942, 1.037202776, 1.053603525,
1.068930331, 1.08315147, 1.096237409, 1.108160957,
1.118897291, 1.128423998, 1.136721226, 1.143771574,
1.149560292, 1.154075265, 1.157307047, 1.159248818,
1.159896529, 1.159248818, 1.157307047, 1.154075265,
1.149560292, 1.143771574, 1.136721226, 1.128423998,
1.118897291, 1.108160957, 1.096237409, 1.08315147,
1.068930331, 1.053603525, 1.037202776, 1.019761942,
1.001316998, 0.981905798, 0.9615681762, 0.9403455873,
0.9182812855, 0.8954199882, 0.8718078895, 0.847492502,
0.8225225065, 0.7969476598, 0.7708187431, 0.7441872751,
0.7171055053, 0.689626244, 0.6618027691, 0.6336885973,
0.6053374807, 0.5768031931, 0.5481394221, 0.5193995898,
0.4906368532, 0.4619038651, 0.4332526757, 0.4047346019,
0.3764001754, 0.3482989051, 0.3204793157, 0.2929886858,
0.2658730424, 0.2391770576, 0.212943884, 0.1872151458,
0.162030763, 0.1374289443, 0.1134461258, 0.09011675956,
0.06747348062, 0.04554676387, 0.02436513506, 0.003954984002,
-0.01565946649, -0.03445621409, -0.05241538944, -0.06951943703,
-0.085753021, -0.1011030852, -0.1155587919, -0.1291116623,
-0.1417554206, -0.1534860427, -0.1643016924, -0.1742028128,
-0.1831919406, -0.1912737755, -0.198455083, -0.2047446886,
-0.2101533743, -0.214693907, -0.2183808121, -0.2212305232,
-0.2232611184, -0.2244923915, -0.2249456736, -0.2246437585,
-0.223610932, -0.221872701, -0.2194558911, -0.2163884272,
-0.2126992079, -0.2084182126, -0.2035761834, -0.1982046325,
-0.1923357307, -0.1860022387, -0.1792372909, -0.172074439,
-0.1645474937, -0.1566904448, -0.1485372711, -0.1401219954,
-0.1314784946, -0.1226404465, -0.1136411693, -0.104513663,
-0.09529038984, -0.08600331368, -0.07668371714, -0.06736218009,
-0.05806849217, -0.04883163923, -0.03967960565, -0.03063949823,
-0.02173724057, -0.01299785294, -0.004445050075, 0.003898510203,
0.0120114516, 0.01987371878, 0.02746641332, 0.03477204034,
0.04177446192, 0.04845881893, 0.05481167793, 0.06082100909,
0.06647614661, 0.07176776518, 0.07668798651, 0.08123030902,
0.08538957045, 0.08916193185, 0.09254493804, 0.09553742354,
0.09813949524, 0.1003525021, 0.1021790258, 0.1036228114,
0.1046887854, 0.1053829182, 0.1057122442, 0.1056848338,
0.1053096883, 0.1045967585, 0.1035567907, 0.1022013392,
0.1005427553, 0.09859394674, 0.09636868824, 0.09388102591,
0.09114574369, 0.08817799363, 0.08499328207, 0.08160747482,
0.07803678014, 0.0742975011, 0.07040613857, 0.06637930212,
0.06223368171, 0.05798585405, 0.05365237905, 0.04924969032,
0.04479407263, 0.04030152292, 0.0357878146, 0.03126837881,
0.0267583219, 0.02227232605, 0.01782462363, 0.01342894118,
0.009098558205, 0.004846165968, 0.000683918981, -0.003376659821,
-0.007324699964, -0.01114988159, -0.01484270347, -0.01839411765,
-0.02179601806, -0.02504086042, -0.02812175712, -0.03103276272,
-0.03376841422, -0.03632406645, -0.03869581877, -0.04088051322,
-0.04287556956, -0.04467920731, -0.04629031953, -0.04770850047,
-0.04893390401, -0.04996742686, -0.05081054857, -0.05146539981,
-0.05193460354, -0.0522214062, -0.05232951832, -0.05226326572,
-0.05202737026, -0.051627048, -0.05106786765, -0.0503558772,
-0.04949738927, -0.04849918852, -0.04736816632, -0.04611169335,
-0.04473714713, -0.04325230996, -0.04166508141, -0.03998331928,
-0.03821536833, -0.036369256, -0.03445323438, -0.03247564125,
-0.03044473373, -0.02836865061, -0.02625557221, -0.02411358996,
-0.02195062519, -0.01977441632, -0.01759261257, -0.01541268359,
-0.01324187199, -0.01108715657, -0.008955278991, -0.006852724797,
-0.004785736303, -0.002760242962, -0.0007818426856, 0.001144170699,
0.003012819169, 0.004819464346, 0.006559784686, 0.008229855716,
0.009826081402, 0.0113452081, 0.01278441212, 0.01414098157,
0.01541303206, 0.01659837872, 0.01769581587, 0.01870419866,
0.01962257961, 0.02045058738, 0.02118814096, 0.02183534433,
0.02239262438, 0.0228608214, 0.02324103906, 0.02353457915,
0.0237429762, 0.02386807742, 0.02391195908, 0.02387693283,
0.0237654538, 0.0235801863, 0.02332394892, 0.02299979734,
0.02261085054, 0.02216040787, 0.02165179807, 0.02108852463,
0.02047409904, 0.01981223275, 0.01910650003, 0.01836076832,
0.01757851783, 0.01676380471, 0.01591999786, 0.01505101153,
0.01416068595, 0.01325220433, 0.0123295518, 0.01139613927,
0.01045533995, 0.009510380936, 0.008564704475, 0.007621410207,
0.006683530599, 0.005753857674, 0.004835267947, 0.003930379128,
0.003041773856, 0.002171720624, 0.001322467315, 0.0004960207406,
-0.0003055993791, -0.001080682372, -0.00182755147, -0.002544844667,
-0.003231214068, -0.003885599968, -0.004506902567, -0.005094386491,
-0.005647212846, -0.006165014615, -0.006647210362, -0.007093708517,
-0.007504467131, -0.007878933678, -0.008218257461, -0.008521722857,
-0.008790026698, -0.009023832733, -0.009223736719, -0.009390153133,
-0.009523960257, -0.009626088825, -0.009697580358, -0.009739324335,
-0.009752387548, -0.00973786063, -0.009697032537, -0.00963116255,
-0.009541564083, -0.009429483812, -0.009296252118, -0.00914319924,
-0.008971721235, -0.008783232512, -0.008579124816, -0.008360797821,
-0.008129587034, -0.00788688517, -0.007633943637, -0.007372232611,
-0.007102792819, -0.006827480141, -0.006546344761, -0.006262452042,
-0.005975209561, -0.005686020159, -0.005397156872, -0.0051085353,
-0.004821306638, -0.004536168589, -0.004254645554, -0.003977186249,
-0.003704785626, -0.003437642969, -0.003176764646, -0.002922412142,
-0.002675609502, -0.002436438721, -0.00220574127, -0.001983373564,
-0.001770105534, -0.00156565289, -0.00137082501, -0.001185183727,
-0.001009559165, -0.0008432719479, -0.0006872050613, -0.0005403286683,
-0.0004037611106, -0.0002759525972, -0.0001586730304, -4.906454506e-005,
4.917075029e-005, 0.0001397615714, 0.0002239625091, 0.000294828955,
0.000360179431, 0.0004176613044, 0.0004686499247, 0.0005113181524,
0.0005473310058, 0.000576164941, 0.0005994721071, 0.0006168285476,
0.0006294231227, 0.0006367227753, 0.0006397031985, 0.000637955229,
0.0006324574426, 0.0006229741377, 0.0006105017978, 0.000594868077,
0.000577003141, 0.0005567178399, 0.0005348296736, 0.0005111187936,
0.0004863371066, 0.000460242331, 0.000433560667, 0.0004060523799,
0.0003784201858, 0.0003504220639, 0.0003227324025, 0.001742279734 };

Copyright 2003-2005 – Laurent de Soras Page 27/28

THE QUEST FOR THE PERFECT RESAMPLER

double fir_interpolator_2 [64 * 24] = {
0, 0.00084549, 0.00025079, 0.00028614,
0.00032345, 0.0003625, 0.00040326, 0.00044552,
0.00048927, 0.00053431, 0.00058068, 0.00062815,
0.00067673, 0.0007262, 0.00077656, 0.00082761,
0.00087945, 0.00093197, 0.00098539, 0.0010396,
0.0010947, 0.0011503, 0.0012067, 0.0012634,
0.0013208, 0.0013791, 0.0014384, 0.001498,
0.0015577, 0.0016174, 0.0016795, 0.0017398,
0.0018011, 0.0018625, 0.0019233, 0.0019841,
0.002044, 0.0021034, 0.0021616, 0.0022187,
0.0022743, 0.0023281, 0.0023799, 0.0024295,
0.0024766, 0.0025212, 0.0025628, 0.0026013,
0.0026363, 0.0026679, 0.0026957, 0.0027199,
0.0027399, 0.0027558, 0.0027673, 0.0027746,
0.0027774, 0.0027755, 0.0027687, 0.0027577,
0.0027414, 0.0027203, 0.0026943, 0.0026631,
0.0026269, 0.0025854, 0.0025387, 0.0024866,
0.0024291, 0.002366, 0.0022975, 0.0022233,
0.0021434, 0.0020578, 0.0019663, 0.0018691,
0.001766, 0.0016571, 0.0015423, 0.0014217,
0.0012953, 0.0011633, 0.0010257, 0.00088249,
0.00073402, 0.00058038, 0.00042169, 0.00025803,
8.9978e-005, -8.2619e-005, -0.00025933, -0.00043984,
-0.00062408, -0.00081155, -0.0010021, -0.0011953,
-0.001391, -0.0015887, -0.0017882, -0.0019891,
-0.0021911, -0.0023938, -0.0025969, -0.0028001,
-0.0030029, -0.0032051, -0.0034062, -0.0036058,
-0.0038038, -0.0039995, -0.0041926, -0.0043828,
-0.0045696, -0.0047527, -0.0049315, -0.0051058,
-0.0052751, -0.0054388, -0.0055967, -0.0057482,
-0.005893, -0.0060306, -0.0061605, -0.0062825,
-0.006396, -0.0065006, -0.006596, -0.0066818,
-0.0067576, -0.0068232, -0.0068781, -0.0069221,
-0.0069549, -0.0069763, -0.006986, -0.0069839,
-0.0069698, -0.0069435, -0.0069049, -0.0068539,
-0.0067904, -0.0067144, -0.0066258, -0.0065247,
-0.0064111, -0.006285, -0.0061465, -0.0059957,
-0.0058327, -0.0056577, -0.0054708, -0.0052722,
-0.0050622, -0.004841, -0.0046088, -0.004366,
-0.0041129, -0.0038499, -0.0035773, -0.0032955,
-0.0030051, -0.0027064, -0.0023999, -0.0020863,
-0.0017661, -0.0014398, -0.0011081, -0.00077158,
-0.00043093, -8.6808e-005, 0.00026005, 0.00060893,
0.00095913, 0.0013099, 0.0016604, 0.0020099,
0.0023577, 0.0027029, 0.0030449, 0.0033826,
0.0037155, 0.0040427, 0.0043634, 0.0046769,
0.0049823, 0.005279, 0.0055661, 0.005843,
0.0061088, 0.006363, 0.0066047, 0.0068334,
0.0070483, 0.0072487, 0.0074342, 0.007604,
0.0077575, 0.0078942, 0.0080136, 0.0081152,
0.0081984, 0.0082628, 0.0083081, 0.0083337,
0.0083395, 0.008325, 0.0082901, 0.0082345,
0.008158, 0.0080605, 0.0079419, 0.0078022,
0.0076415, 0.0074597, 0.007257, 0.0070336,
0.0067897, 0.0065255, 0.0062415, 0.0059379,
0.0056152, 0.0052738, 0.0049144, 0.0045374,
0.0041434, 0.0037332, 0.0033074, 0.0028667,
0.002412, 0.0019441, 0.0014638, 0.00097207,
0.0004698, -4.2025e-005, -0.00056238, -0.0010903,
-0.0016245, -0.0021642, -0.002708, -0.0032548,
-0.0038035, -0.0043529, -0.0049017, -0.0054486,
-0.0059925, -0.006532, -0.0070659, -0.0075928,
-0.0081116, -0.0086207, -0.0091191, -0.0096053,
-0.010078, -0.010536, -0.010979, -0.011404,
-0.01181, -0.012198, -0.012564, -0.012909,
-0.01323, -0.013528, -0.013801, -0.014048,
-0.014268, -0.01446, -0.014624, -0.014759,
-0.014864, -0.014938, -0.014981, -0.014993,
-0.014972, -0.014919, -0.014833, -0.014714,
-0.014561, -0.014376, -0.014157, -0.013904,
-0.013619, -0.0133, -0.012948, -0.012564,
-0.012148, -0.011701, -0.011222, -0.010714,
-0.010175, -0.0096082, -0.0090132, -0.0083913,
-0.0077436, -0.0070711, -0.006375, -0.0056567,
-0.0049174, -0.0041585, -0.0033816, -0.002588,
-0.0017795, -0.00095756, -0.00012395, 0.00071962,
0.0015714, 0.0024295, 0.0032921, 0.0041574,
0.0050234, 0.0058881, 0.0067497, 0.0076062,
0.0084555, 0.0092957, 0.010125, 0.010941,
0.011742, 0.012526, 0.01329, 0.014034,
0.014755, 0.015451, 0.01612, 0.016761,
0.017372, 0.01795, 0.018495, 0.019004,
0.019476, 0.01991, 0.020304, 0.020656,
0.020966, 0.021231, 0.021452, 0.021626,
0.021754, 0.021833, 0.021864, 0.021845,
0.021776, 0.021657, 0.021486, 0.021265,
0.020993, 0.02067, 0.020295, 0.01987,
0.019395, 0.018869, 0.018294, 0.01767,
0.016999, 0.016281, 0.015516, 0.014707,
0.013855, 0.012961, 0.012026, 0.011052,
0.010042, 0.0089957, 0.0079163, 0.0068055,
0.0056656, 0.0044987, 0.0033071, 0.0020932,
0.00085947, -0.00039149, -0.0016571, -0.0029347,
-0.0042215, -0.0055146, -0.0068114, -0.0081088,
-0.0094039, -0.010694, -0.011975, -0.013246,
-0.014502, -0.015741, -0.016959, -0.018154,
-0.019323, -0.020463, -0.02157, -0.022642,
-0.023677, -0.02467, -0.02562, -0.026524,
-0.027379, -0.028183, -0.028933, -0.029627,
-0.030263, -0.030839, -0.031352, -0.0318,
-0.032183, -0.032498, -0.032744, -0.032919,
-0.033023, -0.033053, -0.03301, -0.032892,
-0.032699, -0.03243, -0.032086, -0.031665,
-0.031168, -0.030595, -0.029947, -0.029224,
-0.028427, -0.027556, -0.026614, -0.025601,
-0.024518, -0.023368, -0.022152, -0.020872,
-0.019531, -0.01813, -0.016672, -0.015159,
-0.013596, -0.011984, -0.010326, -0.008626,
-0.0068872, -0.0051131, -0.0033072, -0.0014732,
0.00038505, 0.0022636, 0.0041584, 0.0060655,
0.0079806, 0.0098996, 0.011818, 0.013732,
0.015636, 0.017527, 0.0194, 0.02125,
0.023074, 0.024866, 0.026622, 0.028338,
0.03001, 0.031633, 0.033203, 0.034716,
0.036167, 0.037553, 0.03887, 0.040114,
0.041281, 0.042369, 0.043372, 0.044289,
0.045116, 0.04585, 0.046488, 0.047028,
0.047468, 0.047805, 0.048037, 0.048163,
0.048182, 0.04809, 0.047889, 0.047577,
0.047153, 0.046616, 0.045968, 0.045208,
0.044336, 0.043353, 0.042261, 0.041059,
0.039751, 0.038336, 0.036818, 0.035199,
0.03348, 0.031665, 0.029757, 0.027758,
0.025673, 0.023505, 0.021258, 0.018935,
0.016543, 0.014084, 0.011563, 0.0089869,
0.0063592, 0.0036857, 0.00097182, -0.0017767,
-0.0045541, -0.0073545, -0.010172, -0.013,
-0.015832, -0.018663, -0.021485, -0.024292,

-0.027078, -0.029837, -0.03256, -0.035243,
-0.037879, -0.04046, -0.04298, -0.045434,
-0.047814, -0.050115, -0.05233, -0.054453,
-0.056479, -0.058401, -0.060214, -0.061913,
-0.063491, -0.064946, -0.06627, -0.067461,
-0.068513, -0.069423, -0.070186, -0.070799,
-0.071259, -0.071563, -0.071709, -0.071693,
-0.071515, -0.071171, -0.070662, -0.069986,
-0.069142, -0.068131, -0.066952, -0.065607,
-0.064095, -0.062418, -0.060579, -0.058578,
-0.056419, -0.054104, -0.051636, -0.04902,
-0.046258, -0.043356, -0.040318, -0.037149,
-0.033855, -0.030441, -0.026913, -0.023278,
-0.019543, -0.015715, -0.011801, -0.0078082,
-0.0037453, 0.00037992, 0.0045589, 0.008783,
0.013043, 0.017331, 0.021637, 0.025951,
0.030264, 0.034567, 0.038849, 0.043101,
0.047313, 0.051475, 0.055577, 0.059608,
0.063559, 0.067421, 0.071182, 0.074834,
0.078366, 0.081769, 0.085034, 0.088151,
0.091111, 0.093906, 0.096527, 0.098965,
0.10121, 0.10326, 0.10511, 0.10674,
0.10815, 0.10933, 0.11029, 0.111,
0.11148, 0.1117, 0.11168, 0.1114,
0.11086, 0.11006, 0.109, 0.10767,
0.10608, 0.10422, 0.1021, 0.099704,
0.097048, 0.094129, 0.090949, 0.087511,
0.083819, 0.079877, 0.075689, 0.071261,
0.066598, 0.061708, 0.056597, 0.051272,
0.045742, 0.040016, 0.034103, 0.028013,
0.021756, 0.015343, 0.0087852, 0.0020949,
-0.0047158, -0.011634, -0.018646, -0.02574,
-0.032899, -0.040111, -0.047361, -0.054632,
-0.061911, -0.069181, -0.076426, -0.08363,
-0.090777, -0.097851, -0.10483, -0.11171,
-0.11846, -0.12507, -0.13153, -0.1378,
-0.14389, -0.14977, -0.15542, -0.16083,
-0.16599, -0.17086, -0.17545, -0.17973,
-0.18369, -0.18731, -0.19058, -0.19349,
-0.19601, -0.19814, -0.19987, -0.20117,
-0.20204, -0.20247, -0.20245, -0.20196,
-0.201, -0.19955, -0.19761, -0.19518,
-0.19223, -0.18878, -0.18481, -0.18031,
-0.17529, -0.16973, -0.16365, -0.15703,
-0.14988, -0.14219, -0.13397, -0.12522,
-0.11594, -0.10613, -0.09581, -0.08497,
-0.07362, -0.061769, -0.049424, -0.036594,
-0.023289, -0.0095179, 0.0047068, 0.019373,
0.034469, 0.049979, 0.06589, 0.082187,
0.098854, 0.11587, 0.13323, 0.1509,
0.16887, 0.18713, 0.20564, 0.22439,
0.24336, 0.26253, 0.28187, 0.30136,
0.32099, 0.34072, 0.36054, 0.38042,
0.40033, 0.42025, 0.44016, 0.46004,
0.47985, 0.49958, 0.51919, 0.53867,
0.55798, 0.57711, 0.59603, 0.61472,
0.63314, 0.65129, 0.66912, 0.68663,
0.70378, 0.72056, 0.73694, 0.7529,
0.76842, 0.78347, 0.79805, 0.81212,
0.82567, 0.83869, 0.85114, 0.86303,
0.87432, 0.88501, 0.89508, 0.90452,
0.91331, 0.92144, 0.9289, 0.93569,
0.94178, 0.94718, 0.95187, 0.95585,
0.95912, 0.96166, 0.96348, 0.96458,
0.96494, 0.96458, 0.96348, 0.96166,
0.95912, 0.95585, 0.95187, 0.94718,
0.94178, 0.93569, 0.9289, 0.92144,
0.91331, 0.90452, 0.89508, 0.88501,
0.87432, 0.86303, 0.85114, 0.83869,
0.82567, 0.81212, 0.79805, 0.78347,
0.76842, 0.7529, 0.73694, 0.72056,
0.70378, 0.68663, 0.66912, 0.65129,
0.63314, 0.61472, 0.59603, 0.57711,
0.55798, 0.53867, 0.51919, 0.49958,
0.47985, 0.46004, 0.44016, 0.42025,
0.40033, 0.38042, 0.36054, 0.34072,
0.32099, 0.30136, 0.28187, 0.26253,
0.24336, 0.22439, 0.20564, 0.18713,
0.16887, 0.1509, 0.13323, 0.11587,
0.098854, 0.082187, 0.06589, 0.049979,
0.034469, 0.019373, 0.0047068, -0.0095179,
-0.023289, -0.036594, -0.049424, -0.061769,
-0.07362, -0.08497, -0.09581, -0.10613,
-0.11594, -0.12522, -0.13397, -0.14219,
-0.14988, -0.15703, -0.16365, -0.16973,
-0.17529, -0.18031, -0.18481, -0.18878,
-0.19223, -0.19518, -0.19761, -0.19955,
-0.201, -0.20196, -0.20245, -0.20247,
-0.20204, -0.20117, -0.19987, -0.19814,
-0.19601, -0.19349, -0.19058, -0.18731,
-0.18369, -0.17973, -0.17545, -0.17086,
-0.16599, -0.16083, -0.15542, -0.14977,
-0.14389, -0.1378, -0.13153, -0.12507,
-0.11846, -0.11171, -0.10483, -0.097851,
-0.090777, -0.08363, -0.076426, -0.069181,
-0.061911, -0.054632, -0.047361, -0.040111,
-0.032899, -0.02574, -0.018646, -0.011634,
-0.0047158, 0.0020949, 0.0087852, 0.015343,
0.021756, 0.028013, 0.034103, 0.040016,
0.045742, 0.051272, 0.056597, 0.061708,
0.066598, 0.071261, 0.075689, 0.079877,
0.083819, 0.087511, 0.090949, 0.094129,
0.097048, 0.099704, 0.1021, 0.10422,
0.10608, 0.10767, 0.109, 0.11006,
0.11086, 0.1114, 0.11168, 0.1117,
0.11148, 0.111, 0.11029, 0.10933,
0.10815, 0.10674, 0.10511, 0.10326,
0.10121, 0.098965, 0.096527, 0.093906,
0.091111, 0.088151, 0.085034, 0.081769,
0.078366, 0.074834, 0.071182, 0.067421,
0.063559, 0.059608, 0.055577, 0.051475,
0.047313, 0.043101, 0.038849, 0.034567,
0.030264, 0.025951, 0.021637, 0.017331,
0.013043, 0.008783, 0.0045589, 0.00037992,
-0.0037453, -0.0078082, -0.011801, -0.015715,
-0.019543, -0.023278, -0.026913, -0.030441,
-0.033855, -0.037149, -0.040318, -0.043356,
-0.046258, -0.04902, -0.051636, -0.054104,
-0.056419, -0.058578, -0.060579, -0.062418,
-0.064095, -0.065607, -0.066952, -0.068131,
-0.069142, -0.069986, -0.070662, -0.071171,
-0.071515, -0.071693, -0.071709, -0.071563,
-0.071259, -0.070799, -0.070186, -0.069423,
-0.068513, -0.067461, -0.06627, -0.064946,
-0.063491, -0.061913, -0.060214, -0.058401,
-0.056479, -0.054453, -0.05233, -0.050115,
-0.047814, -0.045434, -0.04298, -0.04046,
-0.037879, -0.035243, -0.03256, -0.029837,
-0.027078, -0.024292, -0.021485, -0.018663,

-0.015832, -0.013, -0.010172, -0.0073545,
-0.0045541, -0.0017767, 0.00097182, 0.0036857,
0.0063592, 0.0089869, 0.011563, 0.014084,
0.016543, 0.018935, 0.021258, 0.023505,
0.025673, 0.027758, 0.029757, 0.031665,
0.03348, 0.035199, 0.036818, 0.038336,
0.039751, 0.041059, 0.042261, 0.043353,
0.044336, 0.045208, 0.045968, 0.046616,
0.047153, 0.047577, 0.047889, 0.04809,
0.048182, 0.048163, 0.048037, 0.047805,
0.047468, 0.047028, 0.046488, 0.04585,
0.045116, 0.044289, 0.043372, 0.042369,
0.041281, 0.040114, 0.03887, 0.037553,
0.036167, 0.034716, 0.033203, 0.031633,
0.03001, 0.028338, 0.026622, 0.024866,
0.023074, 0.02125, 0.0194, 0.017527,
0.015636, 0.013732, 0.011818, 0.0098996,
0.0079806, 0.0060655, 0.0041584, 0.0022636,
0.00038505, -0.0014732, -0.0033072, -0.0051131,
-0.0068872, -0.008626, -0.010326, -0.011984,
-0.013596, -0.015159, -0.016672, -0.01813,
-0.019531, -0.020872, -0.022152, -0.023368,
-0.024518, -0.025601, -0.026614, -0.027556,
-0.028427, -0.029224, -0.029947, -0.030595,
-0.031168, -0.031665, -0.032086, -0.03243,
-0.032699, -0.032892, -0.03301, -0.033053,
-0.033023, -0.032919, -0.032744, -0.032498,
-0.032183, -0.0318, -0.031352, -0.030839,
-0.030263, -0.029627, -0.028933, -0.028183,
-0.027379, -0.026524, -0.02562, -0.02467,
-0.023677, -0.022642, -0.02157, -0.020463,
-0.019323, -0.018154, -0.016959, -0.015741,
-0.014502, -0.013246, -0.011975, -0.010694,
-0.0094039, -0.0081088, -0.0068114, -0.0055146,
-0.0042215, -0.0029347, -0.0016571, -0.00039149,
0.00085947, 0.0020932, 0.0033071, 0.0044987,
0.0056656, 0.0068055, 0.0079163, 0.0089957,
0.010042, 0.011052, 0.012026, 0.012961,
0.013855, 0.014707, 0.015516, 0.016281,
0.016999, 0.01767, 0.018294, 0.018869,
0.019395, 0.01987, 0.020295, 0.02067,
0.020993, 0.021265, 0.021486, 0.021657,
0.021776, 0.021845, 0.021864, 0.021833,
0.021754, 0.021626, 0.021452, 0.021231,
0.020966, 0.020656, 0.020304, 0.01991,
0.019476, 0.019004, 0.018495, 0.01795,
0.017372, 0.016761, 0.01612, 0.015451,
0.014755, 0.014034, 0.01329, 0.012526,
0.011742, 0.010941, 0.010125, 0.0092957,
0.0084555, 0.0076062, 0.0067497, 0.0058881,
0.0050234, 0.0041574, 0.0032921, 0.0024295,
0.0015714, 0.00071962, -0.00012395, -0.00095756,
-0.0017795, -0.002588, -0.0033816, -0.0041585,
-0.0049174, -0.0056567, -0.006375, -0.0070711,
-0.0077436, -0.0083913, -0.0090132, -0.0096082,
-0.010175, -0.010714, -0.011222, -0.011701,
-0.012148, -0.012564, -0.012948, -0.0133,
-0.013619, -0.013904, -0.014157, -0.014376,
-0.014561, -0.014714, -0.014833, -0.014919,
-0.014972, -0.014993, -0.014981, -0.014938,
-0.014864, -0.014759, -0.014624, -0.01446,
-0.014268, -0.014048, -0.013801, -0.013528,
-0.01323, -0.012909, -0.012564, -0.012198,
-0.01181, -0.011404, -0.010979, -0.010536,
-0.010078, -0.0096053, -0.0091191, -0.0086207,
-0.0081116, -0.0075928, -0.0070659, -0.006532,
-0.0059925, -0.0054486, -0.0049017, -0.0043529,
-0.0038035, -0.0032548, -0.002708, -0.0021642,
-0.0016245, -0.0010903, -0.00056238, -4.2025e-005,
0.0004698, 0.00097207, 0.0014638, 0.0019441,
0.002412, 0.0028667, 0.0033074, 0.0037332,
0.0041434, 0.0045374, 0.0049144, 0.0052738,
0.0056152, 0.0059379, 0.0062415, 0.0065255,
0.0067897, 0.0070336, 0.007257, 0.0074597,
0.0076415, 0.0078022, 0.0079419, 0.0080605,
0.008158, 0.0082345, 0.0082901, 0.008325,
0.0083395, 0.0083337, 0.0083081, 0.0082628,
0.0081984, 0.0081152, 0.0080136, 0.0078942,
0.0077575, 0.007604, 0.0074342, 0.0072487,
0.0070483, 0.0068334, 0.0066047, 0.006363,
0.0061088, 0.005843, 0.0055661, 0.005279,
0.0049823, 0.0046769, 0.0043634, 0.0040427,
0.0037155, 0.0033826, 0.0030449, 0.0027029,
0.0023577, 0.0020099, 0.0016604, 0.0013099,
0.00095913, 0.00060893, 0.00026005, -8.6808e-005,
-0.00043093, -0.00077158, -0.0011081, -0.0014398,
-0.0017661, -0.0020863, -0.0023999, -0.0027064,
-0.0030051, -0.0032955, -0.0035773, -0.0038499,
-0.0041129, -0.004366, -0.0046088, -0.004841,
-0.0050622, -0.0052722, -0.0054708, -0.0056577,
-0.0058327, -0.0059957, -0.0061465, -0.006285,
-0.0064111, -0.0065247, -0.0066258, -0.0067144,
-0.0067904, -0.0068539, -0.0069049, -0.0069435,
-0.0069698, -0.0069839, -0.006986, -0.0069763,
-0.0069549, -0.0069221, -0.0068781, -0.0068232,
-0.0067576, -0.0066818, -0.006596, -0.0065006,
-0.006396, -0.0062825, -0.0061605, -0.0060306,
-0.005893, -0.0057482, -0.0055967, -0.0054388,
-0.0052751, -0.0051058, -0.0049315, -0.0047527,
-0.0045696, -0.0043828, -0.0041926, -0.0039995,
-0.0038038, -0.0036058, -0.0034062, -0.0032051,
-0.0030029, -0.0028001, -0.0025969, -0.0023938,
-0.0021911, -0.0019891, -0.0017882, -0.0015887,
-0.001391, -0.0011953, -0.0010021, -0.00081155,
-0.00062408, -0.00043984, -0.00025933, -8.2619e-005,
8.9978e-005, 0.00025803, 0.00042169, 0.00058038,
0.00073402, 0.00088249, 0.0010257, 0.0011633,
0.0012953, 0.0014217, 0.0015423, 0.0016571,
0.001766, 0.0018691, 0.0019663, 0.0020578,
0.0021434, 0.0022233, 0.0022975, 0.002366,
0.0024291, 0.0024866, 0.0025387, 0.0025854,
0.0026269, 0.0026631, 0.0026943, 0.0027203,
0.0027414, 0.0027577, 0.0027687, 0.0027755,
0.0027774, 0.0027746, 0.0027673, 0.0027558,
0.0027399, 0.0027199, 0.0026957, 0.0026679,
0.0026363, 0.0026013, 0.0025628, 0.0025212,
0.0024766, 0.0024295, 0.0023799, 0.0023281,
0.0022743, 0.0022187, 0.0021616, 0.0021034,
0.002044, 0.0019841, 0.0019233, 0.0018625,
0.0018011, 0.0017398, 0.0016795, 0.0016174,
0.0015577, 0.001498, 0.0014384, 0.0013791,
0.0013208, 0.0012634, 0.0012067, 0.0011503,
0.0010947, 0.0010396, 0.00098539, 0.00093197,
0.00087945, 0.00082761, 0.00077656, 0.0007262,
0.00067673, 0.00062815, 0.00058068, 0.00053431,
0.00048927, 0.00044552, 0.00040326, 0.0003625,
0.00032345, 0.00028614, 0.00025079, 0.00084549 };

Copyright 2003-2005 – Laurent de Soras Page 28/28

