
DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

Denormal numbers in floating point signal
processing applications

Laurent de Soras

2005.04.19

web: http://ldesoras.free.fr

ABSTRACT

Nowadays many DSP applications are running on personal computers using general purpose
CPUs. However these processors do not have only advantages in the DSP field. This article will
discuss the annoying calculation slowness, well known as “denormal bug” that is caused
naturally in some circumstances during the processing of very small numbers. Solutions and
useful workarounds are also proposed.

KEYWORDS

Denormal, Digital Signal Processing, CPU

Copyright 2002-2005 – Laurent de Soras Page 1/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

0. Document structure

0.1 Table of content

0. DOCUMENT STRUCTURE.. 2

0.1 TABLE OF CONTENT... 2
0.2 REVISION HISTORY... 2
0.3 GLOSSARY.. 2

1. FLOATING POINT NUMBER CODING OVERVIEW.. 3

1.1 NORMAL MODE.. 3
1.2 DENORMAL MODE... 3

2. DENORMALIZATION IN DSP ALGORITHMS.. 4

2.1 ONE-POLE FILTER... 4
2.2 EXTENSION TO FEEDBACK ELEMENTS.. 4

3. SOLUTIONS...5

3.1 EXPLICIT ELIMINATION OF DENORMALIZED VALUES... 5
3.1.1 Detecting denormal numbers.. 5
3.1.2 Elimination by quantification... 6
3.1.3 Complementary detection.. 7

3.2 PREVENTING DENORMALIZATION... 7
3.2.1 White noise addition.. 7
3.2.2 Noise addition — buffered version... 8
3.2.3 Constant value addition... 8
3.2.4 Constant value + Nyquist frequency addition.. 9
3.2.5 Alternatives and efficient solutions.. 9

4. CONCLUSION...10

5. ACKNOWLEDGEMENTS...10

6. REFERENCES..10

0.2 Revision history

Version Date Modifications
1.0 2002.01.11 First published version
1.1 2005.04.19 Added a few words about SSE, French translation

0.3 Glossary

CPU Central Processing Unit

DSP Digital Signal Processing

FIR Finite Impulse Response (direct filter)

FPU Floating Point Unit

IIR Infinite Impulse Response (recursive filter)

Copyright 2002-2005 – Laurent de Soras Page 2/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

1. Floating point number coding overview

In order to follow the explanations in this paper, it is important to understand clearly how
floating point IEEE numbers are coded [1]. There are three kinds of precision for these
numbers:

• 32 bits, single precision
• 64 bits, double precision
• 80 bits, extended double precision

The first two ones are the most used for signal processing. A preference is given for 32-bit
numbers because they use less memory bandwidth and are often accurate enough. In the
following examples we will also use this number format. Algorithm and code snippets can be
easily translated to the other floating point formats.

1.1 Normal mode

The normal mode is used to cover most of the floating point range. The representation of a
number is divided into three parts: sign, mantissa and biased exponent. Mantissa and biased
exponent are treated as positive integer numbers. Sign is only one bit, set for negative
numbers.

Bit 31/63/79 0

Meaning S E M

The number value is given by the formula below:

x=±1 M
2P ×2E−B

(1)

Where:

• B is the exponent bias, a positive number depending on the precision. For example, it is
equal to 127 for 32-bit numbers. B is used to produce negative exponent because E is
coded as a positive integer.

• P is the mantissa resolution, expressed in bits.

Of course, there are some special cases where the coding is different. For example, 0 is
coded by all bits to 0, except for the sign bit which is not taken into account. The other
example is the denormal coding. NB: 80-bit numbers have the 1 of the formula explicitly coded
in the mantissa.

1.2 Denormal mode

It is possible to code numbers which are so small that they cannot be coded with the normal
format by a compromise on accuracy. The denormal coding is specified by a null biased
exponent. Thus the value can be calculated by this second formula:

x=±M×21−B−P (2)

The implicit “1” is removed in order to reach the smallest numbers by zeroing the most
significant bits of the mantissa. Of course the resolution decreases because there are less

Copyright 2002-2005 – Laurent de Soras Page 3/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

significant bits. 1 is added to the exponent in order to achieve the continuity with the normal
mode.

The major problem with denormal represented numbers is their processing time. It is much
slower than for normal represented numbers. For example, on an AMD Thunderbird CPU, a
multiplication with a denormal operand takes about 170 cycles, which is more than 30 times
slower than with normal operands only ! When almost all the processed numbers are
denormal, CPU load increases a lot and can affect the stability of real-time applications, even
on the fastest systems.

2. Denormalization in DSP algorithms

The most perverse effect of denormalization comes from the structure of DSP algorithms.
Signal flow generally follows a chain of basic building blocks. When an element generates
denormal numbers, they will pass through the subsequent elements, slowing down the
calculations again.

Denormalization is often caused by the use of feedback structures, and IIR filters are the
most problematic ones. These filters are often preferred to FIR because of their computational
cheapness, despite of their poor phase response properties.

2.1 One-pole filter

To simplify the analysis, let’s start with the simplest recursive element, the one-pole filer.
Its equation in the z-plane is:

H z = 1
1 −az−1

(3)

We can deduce the recursive equation:

y [k]=x [k]ay [k−1] (4)

For stability reasons, we always assume ∣a∣1 . When input is a not-null signal, there is
usually no problem. On the other hand, as soon as input becomes and stays null, ∣y [k]∣
exponentially converges to 0. The convergence speed depends on the constant a. Invariably,
output is smaller and smaller, and finally turns into denormal before reaching 0.

Theoretically, after having been denormalized, output reaches 0, and remains null.
However, the “to nearest” rounding rule has bad effects. When y [k] reaches the smallest
numbers, multiplication result can stay constant. I.e. 4 multiplied by 0.9 and rounded to the

nearest integer gives 4 again. Therefore ∣a∣1
2 will keep the output constant below a given

threshold. Output stays denormalized until input stops being 0.

Well, we can now point out two aspects of the problem:

• Output turning into denormal state, temporarily or not.
• Stability of this state, far worse for general performances.

2.2 Extension to feedback elements

Straight IIR implementation can be split into two parts connected in a serial way:

Copyright 2002-2005 – Laurent de Soras Page 4/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

• Direct part (zeros): u [k]=∑
i=0

N

bi x [k−i]

• Recursive part (poles): y [k]=u [k]−∑
i=0

N

ai y [k−i]

(5)

(6)

The direct part can be seen as a FIR filter. Such filters rarely give denormal numbers.
Numbers in the multiplications are generally many orders of magnitude above the denormal
threshold. Moreover, if a product is far smaller than the other ones, it gets absorbed by the
sum because of the limited resolution of the mantissa. Indeed, with ∣x∣≫∣y∣ , x y=x . In
spite of that, filters likely to completely cancel a signal should be handled carefully.

It is the all-pole part which is mainly responsible for the denormalization. When u [k]
becomes and stays null, one can see the same case as for the one-pole studied previously. This
does not always mean that filter input x [k] is null, because it can be cancelled by the FIR
part. It is often the case in high-pass filters with a constant signal as input. Obviously, one can
invert direct and recursive part order or by changing the implementation, if it is feasible. But
the important thing to remember is the fact that a null input gives the pure recursive scheme.

We know how denormal state may appear. Its stability is far more difficult to understand. It
depends on various parameters:

• Multiplying coefficient values.
• FPU (Floating Point Unit) rounding rules. It is generally “round to nearest”, which

increases state stability.
• Intermediary calculation order. In some cases, it is possible that two numbers may cancel

each other during a sum.
• Intermediary calculation resolution. Final values could change depending on the precision

of computation and storage.

Unfortunately, there is no miraculous formula to know if an algorithm is denormal-stable or
not. One has to analyse carefully each algorithm implementation, given typical and exceptional
input. However these clues should help to perform this analysis.

Another important thing is to note that these behaviours are not filter-specific. Any feedback
system could be prone to these kinds of issue. For example, it is the case of feedback delay
lines.

3. Solutions

We’re going to examine two kinds of solutions. The first one is the denormal elimination,
done after they appear. The second kind will try to prevent signal from becoming
denormalized. In all the cases, it’s more important to treat the feedback path than the output
itself. The latter would be more a symptom dissimulation than a real cure.

Below are presented some methods to prevent the bad effects of denormal numbers. Most
of them assume that meaningful data are many magnitude orders higher than the denormal
threshold, which is generally the case. For example a number whose absolute value is below
10–20 can be considered as 0.

3.1 Explicit elimination of denormalized values

3.1.1 Detecting denormal numbers

The first idea is to replace every denormal number by 0. It implies to detect these numbers.
As we said before, one recognizes a denormal number by its null biased exponent and not null

Copyright 2002-2005 – Laurent de Soras Page 5/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

mantissa. This detection can be done by testing directly the bits of the data. The C++ function
below tests a 32-bit floating point number and sets it to 0 if needed. The first line is used to
treat floating point data as an integer to access its bit. This technique is very convenient and
will also be used further down in this document.

void test_and_kill_denormal (float &val)
{
 // Requires 32-bit int
 const int x = *reinterpret_cast <const int *> (&val);
 const int abs_mantissa = x & 0x007FFFFF;
 const int biased_exponent = x & 0x7F800000;
 if (biased_exponent == 0 && abs_mantissa != 0)
 {
 val = 0;
 }
}

Although one can optimise this function, it was written here mainly for educational
purposes. The point was to make it clear and readable to easily catch the concepts. One
optimisation could be the removal of mantissa testing. However it still requires a test, which
could be a pain for modern CPUs with long instruction pipelines.

+ Replace denormal numbers by true 0’s

Does not alter normal numbers

— Test may break the instruction pipeline, slowing down the code.

Requires a memory store to access the bits.

Must be repeated at each stage of the process.

Some processor instruction sets can handle directly denormal numbers, like the SSE.
Setting the Denormal Are Zeros (DAZ) flag of the MXCSR register enables the processor to
treat automatically denormal numbers as null operands. In this case, this is probably the best
method. However, it works only with SSE instructions.

3.1.2 Elimination by quantification

The following function can remove denormal numbers without any test. The drawback is a
slight loss of accuracy for the smallest number; anyway it is usually without consequence.

Void kill_denormal_by_quantization (float &val)
{
 static const float anti_denormal = 1e-18;
 val += anti_denormal;
 val -= anti_denormal;
}

It relies on the limited resolution of mantissa. When a denormal number is added to the
anti_denormal constant, it is absorbed because it is too small and cannot be coded in the final
mantissa. Subtracting the constant again results in a true 0. With big (normal) numbers, it is
the constant which is absorbed, and the operations have no effect. On the other hand, the first
operation may slow down the code if done with a denormal. However this kind of operation has
another useful role, as we will see later.

Depending on the case, one may have to correct the constant value. For example if the
whole calculation is done in the FPU registers, a 80-bit arithmetic may be used, with 64-bit
mantissas. The anti_denormal value should therefore be 264 times higher than FLT_MIN. On
the other hand, if everything is done with a 32-bit accuracy, one may reduce the
anti_denormal value to get a better accuracy for the small values.

Copyright 2002-2005 – Laurent de Soras Page 6/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

+ Replaces denormal numbers by true 0’s

Quantification has a preventive effect on the outputted numbers

Quite fast, only two additions.

— Processing already denormal numbers slightly slows down the computation.

Quantifies the smallest numbers, adding relative error.

Must be repeated at each stage of the process.

3.1.3 Complementary detection

Another way to detect denormal numbers is FPU flags. Indeed, they can raise an exception
(fortunately generally masked) at each operation with a denormal operand. A flag helps to
keep the trace of this exception, and remains set until it is explicitly cleared. Thus, one just
needs to check the flag regularly to ensure that no denormal numbers were used in operations.
After having detected a denormal, one may hunt it with the functions shown above. However it
requires assembly code or system specific functions. Here is an example, coded for x86
processor class, and compilable with MS Visual C++:

bool is_denormalized ()
{
 short int status;
 __asm
 {
 fstsw word ptr [status] ; Retrieve FPU status word
 fclex ; Clear FPU exceptions (denormal flag)
 }
 return ((status & 0x0002) != 0);
}

3.2 Preventing denormalization

Primarily, the task consists in adding noise to the signal, before or during the processing.
This noise should be low enough not to alter the data, but should be able to pull the denormals
over the fatal threshold when added to the signal.

The big benefit of noise addition is its propagation to the next stages in the processing flow.
Except for special cases, this allows to cure the problem at the beginning and not to care about
it afterwards.

There are various ways to generate noise, we will discuss some of them. Of course, the
perfect and universal method does not exist: every solution should be carefully chosen and
adapted to the context. Indeed, the noise spectral content is important, subsequent filters
should not cancel it completely, making it useless.

3.2.1 White noise addition

A simple method is white noise generation. White noise has a uniform spectral content
which makes it very well fit for numerous situations. It allows to “forget” the denormal issue on
subsequent processing. As we do not need pure white noise, quality not being our main aim,
we will focus on the generation speed.

unsigned int rand_state = 1; // Needs 32-bit int

void add_white_noise (float &val)
{
 rand_state = rand_state * 1234567UL + 890123UL;
 int mantissa = rand_state & 0x807F0000; // Keep only most significant bits

Copyright 2002-2005 – Laurent de Soras Page 7/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

 int flt_rnd = mantissa | 0x1E000000; // Set exponent
 val += *reinterpret_cast <const float *> (&flt_rnd);
}

It outputs random numbers whose magnitude is about 10–20. It can be adjusted by
modifying the line setting the exponent. Beware: if the spectrum is uniform, the DC component
is very low. This may be a problem in certain cases. A workaround is to generate only positive
numbers by modifying the second line with rand_state & 0x007F0000.

+ Fills the spectrum uniformly.

Propagates to next stages.

— Not that fast.

Requires a memory store/load to access the number bit-field.

Alters the smallest numbers by quantifying them.

3.2.2 Noise addition — buffered version

In the add_white_noise() function, a significant percentage of CPU time is taken by the
noise calculation. A common technique consists in pre-calculating the noise once, and storing it
in a look-up table for later use. To process signal, we will just have to add the buffer content to
it.

add_white_noise_buffer (float val_arr [],const float noise_arr [],long nbr_spl)
{
 for (long pos = 0; pos < nbr_spl; ++pos)
 {
 val_arr [pos] += noise_arr [pos];
 }
}

The proposed method is block-based, but it is possible to process data sample per sample.
The small size of the buffer and thus the fact it will be repeated often is not a concern. Again,
the noise quality is not the most important point. The real problem may come from the cache
pollution generated by the buffer reading. Keeping it small should get rid of that.

+ Fast.

Fills the spectrum almost uniformly.

Propagates to next stages.

— Pollutes the cache memory.

Alters the smallest numbers by quantifying them.

3.2.3 Constant value addition

A uniform noise is not always required to fix the algorithm. Thus, if the signal passes
through elements preserving the low frequencies, it is possible to add only a constant (DC).
The operation is pretty similar to kill_denormal_by_quantization():

void add_dc (float &val)
{
 static const float anti_denormal = 1e-20;
 val += anti_denormal;
}

In a feedback loop, this process has an integration effect. But you may use it, even if the
feedback gain is high (but less or equal to 1). Indeed, let us say that the tolerated noise should
be below –200 dB (that is 10–10). Then it would require about 10 billion operations to reach this

Copyright 2002-2005 – Laurent de Soras Page 8/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

value with a feedback gain of exactly 1. Of course if the processed data are not null, the
anti_denormal constant will be absorbed.

+ Fast.

Propagates to next stages.

— Cancelled by DC-blockers or high-pass filters.

Alters the smallest numbers by quantifying them.

3.2.4 Constant value + Nyquist frequency addition

This method is a variation of the function described above. The point is to use add_dc()
only every other time. Thus signal is added to the sequence +A, 0, +A, 0... It contains Nyquist
frequency (half the sample rate) and a constant offset. However calculation reduction is
balanced by the increased complexity of the algorithm, whose loops require to be unrolled to
fix efficiently one sample on two without any branch.

+ Fast.

Propagates to next stages.

— Cancelled by band-pass filters.

It does not kill all denormal numbers, but prevents them to appear in feedback loops.

Requires to unroll loops to avoid branch.

Alters the smallest numbers by quantifying them.

3.2.5 Alternatives and efficient solutions

The methods below are derived from the previous ones and are close to perfection. They fit
in numerous common cases and are very fast. They are based on the addition of two
alternative values to the signal. As soon as the added value changes, the denormal apparition
is prevented in or for future feedback loops, for a limited number of samples. Value
alternations just have to be frequent enough to prevent most of the denormal apparitions.

Spectrum of the generated noise is quite rich. Moreover, by choosing 0 for one of the
values, one can create a DC offset while reducing calculations

To minimize calculations, one can also call add_dc() sporadically, for example one time
every 20 samples, or even more. This produces random pulses, the spectral content of which is
rich and close to the white noise. However generating this random time component is not
always obvious and easy. One may just call add_dc() regularly to generate an impulse train.
This method also produces a lot of frequencies everywhere in the spectrum. It is especially
adapted to block-based processing. Of course block size should be carefully chosen depending
on DSP algorithm architecture.

+ Very fast.

Fills the spectrum almost uniformly.

Propagates to next stages.

— It does not eliminate denormal numbers, but prevents their apparition.

To be maximally efficient, requires block-processing algorithms whose size should be
carefully chosen.

Alters the smallest numbers by quantifying them.

Copyright 2002-2005 – Laurent de Soras Page 9/10

DENORMAL NUMBERS IN FLOATING POINT SIGNAL PROCESSING APPLICATIONS

4. Conclusion

The various clues presented in this paper should help developers to fight efficiently number
denormalization in DSP algorithms. There is no universal miraculous method, but numerous
variations on the same theme, each one adapted to a given situation. Explicit and systematic
denormalized number elimination is interesting to fix signals which may be “impure”. The
preventive method class is more intended to vaccinate the signal to avoid denormal number
generation.

5. Acknowledgements

Writing this article has been possible with the contributor help of the MusicDSP mailing list
and #musicdsp IRC channel on EFNet servers. Thanks also to Frédérique and Julien Bœuf for
their advice, suggestions and rereading.

6. References

[1] David Goldberg, What Every Computer Scientist Should Know About Floating-Point
Arithmetic, Computing Surveys, 1991

[2] Intel Corporation, IA-32 Intel Architecture Software Developer's Manual Volume 1: Basic
Architecture, 2000

[3] Various contributors from the MusicDSP e-mailing list, Denormal Numbers,
http://www.smartelectronix.com/musicdsp/text/other001.txt, 2000

Copyright 2002-2005 – Laurent de Soras Page 10/10

